diff options
| author | Marc Zyngier <maz@kernel.org> | 2025-02-25 17:29:24 +0000 |
|---|---|---|
| committer | Oliver Upton <oliver.upton@linux.dev> | 2025-03-03 14:57:10 -0800 |
| commit | 201c8d40dde900719e9dc1548698e18195f46443 (patch) | |
| tree | 6fe6c67ad4932ee87f998049331c0f7a7cc4bc11 /arch/arm64/kvm/vgic/vgic-v3-nested.c | |
| parent | 4b1b97f0d7cfd3e29ae72f380996b8359200fd86 (diff) | |
KVM: arm64: nv: Add Maintenance Interrupt emulation
Emulating the vGIC means emulating the dreaded Maintenance Interrupt.
This is a two-pronged problem:
- while running L2, getting an MI translates into an MI injected
in the L1 based on the state of the HW.
- while running L1, we must accurately reflect the state of the
MI line, based on the in-memory state.
The MI INTID is added to the distributor, as expected on any
virtualisation-capable implementation, and further patches
will allow its configuration.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250225172930.1850838-11-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Diffstat (limited to 'arch/arm64/kvm/vgic/vgic-v3-nested.c')
| -rw-r--r-- | arch/arm64/kvm/vgic/vgic-v3-nested.c | 45 |
1 files changed, 45 insertions, 0 deletions
diff --git a/arch/arm64/kvm/vgic/vgic-v3-nested.c b/arch/arm64/kvm/vgic/vgic-v3-nested.c index eabff56b8b65..26585a02caa2 100644 --- a/arch/arm64/kvm/vgic/vgic-v3-nested.c +++ b/arch/arm64/kvm/vgic/vgic-v3-nested.c @@ -73,6 +73,24 @@ static DEFINE_PER_CPU(struct shadow_if, shadow_if); * interrupt. The L0 active state will be cleared by the HW if the L1 * interrupt was itself backed by a HW interrupt. * + * Maintenance Interrupt (MI) management: + * + * Since the L2 guest runs the vgic in its full glory, MIs get delivered and + * used as a handover point between L2 and L1. + * + * - on delivery of a MI to L0 while L2 is running: make the L1 MI pending, + * and let it rip. This will initiate a vcpu_put() on L2, and allow L1 to + * run and process the MI. + * + * - L1 MI is a fully virtual interrupt, not linked to the host's MI. Its + * state must be computed at each entry/exit of the guest, much like we do + * it for the PMU interrupt. + * + * - because most of the ICH_*_EL2 registers live in the VNCR page, the + * quality of emulation is poor: L1 can setup the vgic so that an MI would + * immediately fire, and not observe anything until the next exit. Trying + * to read ICH_MISR_EL2 would do the trick, for example. + * * System register emulation: * * We get two classes of registers: @@ -341,3 +359,30 @@ void vgic_v3_put_nested(struct kvm_vcpu *vcpu) shadow_if->lr_map = 0; } + +/* + * If we exit a L2 VM with a pending maintenance interrupt from the GIC, + * then we need to forward this to L1 so that it can re-sync the appropriate + * LRs and sample level triggered interrupts again. + */ +void vgic_v3_handle_nested_maint_irq(struct kvm_vcpu *vcpu) +{ + bool state = read_sysreg_s(SYS_ICH_MISR_EL2); + + /* This will force a switch back to L1 if the level is high */ + kvm_vgic_inject_irq(vcpu->kvm, vcpu, + vcpu->kvm->arch.vgic.mi_intid, state, vcpu); + + sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EL2_En, 0); +} + +void vgic_v3_nested_update_mi(struct kvm_vcpu *vcpu) +{ + bool level; + + level = __vcpu_sys_reg(vcpu, ICH_HCR_EL2) & ICH_HCR_EL2_En; + if (level) + level &= vgic_v3_get_misr(vcpu); + kvm_vgic_inject_irq(vcpu->kvm, vcpu, + vcpu->kvm->arch.vgic.mi_intid, level, vcpu); +} |