diff options
| author | Thomas Gleixner <tglx@linutronix.de> | 2025-11-19 18:27:22 +0100 |
|---|---|---|
| committer | Thomas Gleixner <tglx@linutronix.de> | 2025-11-25 19:45:42 +0100 |
| commit | 653fda7ae73d8033dedb65537acac0c2c287dc3f (patch) | |
| tree | 767d8491def78517d86b1d064b613888693d9fad /kernel | |
| parent | 9da6ccbcea3de1fa704202e3346fe6c0226bfc18 (diff) | |
sched/mmcid: Switch over to the new mechanism
Now that all pieces are in place, change the implementations of
sched_mm_cid_fork() and sched_mm_cid_exit() to adhere to the new strict
ownership scheme and switch context_switch() over to use the new
mm_cid_schedin() functionality.
The common case is that there is no mode change required, which makes
fork() and exit() just update the user count and the constraints.
In case that a new user would exceed the CID space limit the fork() context
handles the transition to per CPU mode with mm::mm_cid::mutex held. exit()
handles the transition back to per task mode when the user count drops
below the switch back threshold. fork() might also be forced to handle a
deferred switch back to per task mode, when a affinity change increased the
number of allowed CPUs enough.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://patch.msgid.link/20251119172550.280380631@linutronix.de
Diffstat (limited to 'kernel')
| -rw-r--r-- | kernel/fork.c | 1 | ||||
| -rw-r--r-- | kernel/sched/core.c | 115 | ||||
| -rw-r--r-- | kernel/sched/sched.h | 76 |
3 files changed, 99 insertions, 93 deletions
diff --git a/kernel/fork.c b/kernel/fork.c index 6c23219e1169..8475958e029b 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -956,7 +956,6 @@ static struct task_struct *dup_task_struct(struct task_struct *orig, int node) #ifdef CONFIG_SCHED_MM_CID tsk->mm_cid.cid = MM_CID_UNSET; - tsk->mm_cid.last_cid = MM_CID_UNSET; tsk->mm_cid.active = 0; #endif return tsk; diff --git a/kernel/sched/core.c b/kernel/sched/core.c index cbb543a6efda..62235f1dc04e 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -5307,7 +5307,7 @@ context_switch(struct rq *rq, struct task_struct *prev, } } - switch_mm_cid(prev, next); + mm_cid_switch_to(prev, next); /* * Tell rseq that the task was scheduled in. Must be after @@ -10624,7 +10624,7 @@ static bool mm_cid_fixup_task_to_cpu(struct task_struct *t, struct mm_struct *mm return true; } -static void __maybe_unused mm_cid_fixup_tasks_to_cpus(void) +static void mm_cid_fixup_tasks_to_cpus(void) { struct mm_struct *mm = current->mm; struct task_struct *p, *t; @@ -10674,25 +10674,81 @@ static bool sched_mm_cid_add_user(struct task_struct *t, struct mm_struct *mm) void sched_mm_cid_fork(struct task_struct *t) { struct mm_struct *mm = t->mm; + bool percpu; WARN_ON_ONCE(!mm || t->mm_cid.cid != MM_CID_UNSET); guard(mutex)(&mm->mm_cid.mutex); - scoped_guard(raw_spinlock, &mm->mm_cid.lock) { - sched_mm_cid_add_user(t, mm); - /* Preset last_cid for mm_cid_select() */ - t->mm_cid.last_cid = mm->mm_cid.max_cids - 1; + scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { + struct mm_cid_pcpu *pcp = this_cpu_ptr(mm->mm_cid.pcpu); + + /* First user ? */ + if (!mm->mm_cid.users) { + sched_mm_cid_add_user(t, mm); + t->mm_cid.cid = mm_get_cid(mm); + /* Required for execve() */ + pcp->cid = t->mm_cid.cid; + return; + } + + if (!sched_mm_cid_add_user(t, mm)) { + if (!mm->mm_cid.percpu) + t->mm_cid.cid = mm_get_cid(mm); + return; + } + + /* Handle the mode change and transfer current's CID */ + percpu = !!mm->mm_cid.percpu; + if (!percpu) + mm_cid_transit_to_task(current, pcp); + else + mm_cid_transfer_to_cpu(current, pcp); + } + + if (percpu) { + mm_cid_fixup_tasks_to_cpus(); + } else { + mm_cid_fixup_cpus_to_tasks(mm); + t->mm_cid.cid = mm_get_cid(mm); } } static bool sched_mm_cid_remove_user(struct task_struct *t) { t->mm_cid.active = 0; - mm_unset_cid_on_task(t); + scoped_guard(preempt) { + /* Clear the transition bit */ + t->mm_cid.cid = cid_from_transit_cid(t->mm_cid.cid); + mm_unset_cid_on_task(t); + } t->mm->mm_cid.users--; return mm_update_max_cids(t->mm); } +static bool __sched_mm_cid_exit(struct task_struct *t) +{ + struct mm_struct *mm = t->mm; + + if (!sched_mm_cid_remove_user(t)) + return false; + /* + * Contrary to fork() this only deals with a switch back to per + * task mode either because the above decreased users or an + * affinity change increased the number of allowed CPUs and the + * deferred fixup did not run yet. + */ + if (WARN_ON_ONCE(mm->mm_cid.percpu)) + return false; + /* + * A failed fork(2) cleanup never gets here, so @current must have + * the same MM as @t. That's true for exit() and the failed + * pthread_create() cleanup case. + */ + if (WARN_ON_ONCE(current->mm != mm)) + return false; + return true; +} + /* * When a task exits, the MM CID held by the task is not longer required as * the task cannot return to user space. @@ -10703,10 +10759,43 @@ void sched_mm_cid_exit(struct task_struct *t) if (!mm || !t->mm_cid.active) return; + /* + * Ensure that only one instance is doing MM CID operations within + * a MM. The common case is uncontended. The rare fixup case adds + * some overhead. + */ + scoped_guard(mutex, &mm->mm_cid.mutex) { + /* mm_cid::mutex is sufficient to protect mm_cid::users */ + if (likely(mm->mm_cid.users > 1)) { + scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { + if (!__sched_mm_cid_exit(t)) + return; + /* Mode change required. Transfer currents CID */ + mm_cid_transit_to_task(current, this_cpu_ptr(mm->mm_cid.pcpu)); + } + mm_cid_fixup_cpus_to_tasks(mm); + return; + } + /* Last user */ + scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { + /* Required across execve() */ + if (t == current) + mm_cid_transit_to_task(t, this_cpu_ptr(mm->mm_cid.pcpu)); + /* Ignore mode change. There is nothing to do. */ + sched_mm_cid_remove_user(t); + } + } - guard(mutex)(&mm->mm_cid.mutex); - scoped_guard(raw_spinlock, &mm->mm_cid.lock) - sched_mm_cid_remove_user(t); + /* + * As this is the last user (execve(), process exit or failed + * fork(2)) there is no concurrency anymore. + * + * Synchronize eventually pending work to ensure that there are no + * dangling references left. @t->mm_cid.users is zero so nothing + * can queue this work anymore. + */ + irq_work_sync(&mm->mm_cid.irq_work); + cancel_work_sync(&mm->mm_cid.work); } /* Deactivate MM CID allocation across execve() */ @@ -10719,18 +10808,12 @@ void sched_mm_cid_before_execve(struct task_struct *t) void sched_mm_cid_after_execve(struct task_struct *t) { sched_mm_cid_fork(t); - guard(preempt)(); - mm_cid_select(t); } static void mm_cid_work_fn(struct work_struct *work) { struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.work); - /* Make it compile, but not functional yet */ - if (!IS_ENABLED(CONFIG_NEW_MM_CID)) - return; - guard(mutex)(&mm->mm_cid.mutex); /* Did the last user task exit already? */ if (!mm->mm_cid.users) diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index 82c7978d548e..f9d0515db130 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -3745,83 +3745,7 @@ static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct mm_cid_schedin(next); } -/* Active implementation */ -static inline void init_sched_mm_cid(struct task_struct *t) -{ - struct mm_struct *mm = t->mm; - unsigned int max_cid; - - if (!mm) - return; - - /* Preset last_mm_cid */ - max_cid = min_t(int, READ_ONCE(mm->mm_cid.nr_cpus_allowed), atomic_read(&mm->mm_users)); - t->mm_cid.last_cid = max_cid - 1; -} - -static inline bool __mm_cid_get(struct task_struct *t, unsigned int cid, unsigned int max_cids) -{ - struct mm_struct *mm = t->mm; - - if (cid >= max_cids) - return false; - if (test_and_set_bit(cid, mm_cidmask(mm))) - return false; - t->mm_cid.cid = t->mm_cid.last_cid = cid; - __this_cpu_write(mm->mm_cid.pcpu->cid, cid); - return true; -} - -static inline bool mm_cid_get(struct task_struct *t) -{ - struct mm_struct *mm = t->mm; - unsigned int max_cids; - - max_cids = READ_ONCE(mm->mm_cid.max_cids); - - /* Try to reuse the last CID of this task */ - if (__mm_cid_get(t, t->mm_cid.last_cid, max_cids)) - return true; - - /* Try to reuse the last CID of this mm on this CPU */ - if (__mm_cid_get(t, __this_cpu_read(mm->mm_cid.pcpu->cid), max_cids)) - return true; - - /* Try the first zero bit in the cidmask. */ - return __mm_cid_get(t, find_first_zero_bit(mm_cidmask(mm), num_possible_cpus()), max_cids); -} - -static inline void mm_cid_select(struct task_struct *t) -{ - /* - * mm_cid_get() can fail when the maximum CID, which is determined - * by min(mm->nr_cpus_allowed, mm->mm_users) changes concurrently. - * That's a transient failure as there cannot be more tasks - * concurrently on a CPU (or about to be scheduled in) than that. - */ - for (;;) { - if (mm_cid_get(t)) - break; - } -} - -static inline void switch_mm_cid(struct task_struct *prev, struct task_struct *next) -{ - if (prev->mm_cid.active) { - if (prev->mm_cid.cid != MM_CID_UNSET) - clear_bit(prev->mm_cid.cid, mm_cidmask(prev->mm)); - prev->mm_cid.cid = MM_CID_UNSET; - } - - if (next->mm_cid.active) { - mm_cid_select(next); - rseq_sched_set_task_mm_cid(next, next->mm_cid.cid); - } -} - #else /* !CONFIG_SCHED_MM_CID: */ -static inline void mm_cid_select(struct task_struct *t) { } -static inline void switch_mm_cid(struct task_struct *prev, struct task_struct *next) { } static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) { } #endif /* !CONFIG_SCHED_MM_CID */ |