summaryrefslogtreecommitdiff
path: root/lib/crypto
diff options
context:
space:
mode:
authorEric Biggers <ebiggers@kernel.org>2025-11-09 15:47:20 -0800
committerEric Biggers <ebiggers@kernel.org>2025-11-11 11:03:38 -0800
commit4d8da35579daad0392d238460ed7e9629d49ca35 (patch)
tree23a836244a9b234437c105d555834787ee667a82 /lib/crypto
parent37919e239ebb2cba573cca56292f7c39fa6d7415 (diff)
lib/crypto: x86/polyval: Migrate optimized code into library
Migrate the x86_64 implementation of POLYVAL into lib/crypto/, wiring it up to the POLYVAL library interface. This makes the POLYVAL library be properly optimized on x86_64. This drops the x86_64 optimizations of polyval in the crypto_shash API. That's fine, since polyval will be removed from crypto_shash entirely since it is unneeded there. But even if it comes back, the crypto_shash API could just be implemented on top of the library API, as usual. Adjust the names and prototypes of the assembly functions to align more closely with the rest of the library code. Also replace a movaps instruction with movups to remove the assumption that the key struct is 16-byte aligned. Users can still align the key if they want (and at least in this case, movups is just as fast as movaps), but it's inconvenient to require it. Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20251109234726.638437-6-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Diffstat (limited to 'lib/crypto')
-rw-r--r--lib/crypto/Kconfig1
-rw-r--r--lib/crypto/Makefile1
-rw-r--r--lib/crypto/x86/polyval-pclmul-avx.S319
-rw-r--r--lib/crypto/x86/polyval.h83
4 files changed, 404 insertions, 0 deletions
diff --git a/lib/crypto/Kconfig b/lib/crypto/Kconfig
index 430723994142..9d04b3771ce2 100644
--- a/lib/crypto/Kconfig
+++ b/lib/crypto/Kconfig
@@ -145,6 +145,7 @@ config CRYPTO_LIB_POLYVAL_ARCH
bool
depends on CRYPTO_LIB_POLYVAL && !UML
default y if ARM64 && KERNEL_MODE_NEON
+ default y if X86_64
config CRYPTO_LIB_CHACHA20POLY1305
tristate
diff --git a/lib/crypto/Makefile b/lib/crypto/Makefile
index 2efa96afcb4b..6580991f8e12 100644
--- a/lib/crypto/Makefile
+++ b/lib/crypto/Makefile
@@ -203,6 +203,7 @@ libpolyval-y := polyval.o
ifeq ($(CONFIG_CRYPTO_LIB_POLYVAL_ARCH),y)
CFLAGS_polyval.o += -I$(src)/$(SRCARCH)
libpolyval-$(CONFIG_ARM64) += arm64/polyval-ce-core.o
+libpolyval-$(CONFIG_X86) += x86/polyval-pclmul-avx.o
endif
################################################################################
diff --git a/lib/crypto/x86/polyval-pclmul-avx.S b/lib/crypto/x86/polyval-pclmul-avx.S
new file mode 100644
index 000000000000..7f739465ad35
--- /dev/null
+++ b/lib/crypto/x86/polyval-pclmul-avx.S
@@ -0,0 +1,319 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright 2021 Google LLC
+ */
+/*
+ * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI
+ * instructions. It works on 8 blocks at a time, by precomputing the first 8
+ * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation
+ * allows us to split finite field multiplication into two steps.
+ *
+ * In the first step, we consider h^i, m_i as normal polynomials of degree less
+ * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
+ * is simply polynomial multiplication.
+ *
+ * In the second step, we compute the reduction of p(x) modulo the finite field
+ * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
+ *
+ * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
+ * multiplication is finite field multiplication. The advantage is that the
+ * two-step process only requires 1 finite field reduction for every 8
+ * polynomial multiplications. Further parallelism is gained by interleaving the
+ * multiplications and polynomial reductions.
+ */
+
+#include <linux/linkage.h>
+#include <asm/frame.h>
+
+#define STRIDE_BLOCKS 8
+
+#define GSTAR %xmm7
+#define PL %xmm8
+#define PH %xmm9
+#define TMP_XMM %xmm11
+#define LO %xmm12
+#define HI %xmm13
+#define MI %xmm14
+#define SUM %xmm15
+
+#define ACCUMULATOR %rdi
+#define KEY_POWERS %rsi
+#define MSG %rdx
+#define BLOCKS_LEFT %rcx
+#define TMP %rax
+
+.section .rodata.cst16.gstar, "aM", @progbits, 16
+.align 16
+
+.Lgstar:
+ .quad 0xc200000000000000, 0xc200000000000000
+
+.text
+
+/*
+ * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length
+ * count pointed to by MSG and KEY_POWERS.
+ */
+.macro schoolbook1 count
+ .set i, 0
+ .rept (\count)
+ schoolbook1_iteration i 0
+ .set i, (i +1)
+ .endr
+.endm
+
+/*
+ * Computes the product of two 128-bit polynomials at the memory locations
+ * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of
+ * the 256-bit product into LO, MI, HI.
+ *
+ * Given:
+ * X = [X_1 : X_0]
+ * Y = [Y_1 : Y_0]
+ *
+ * We compute:
+ * LO += X_0 * Y_0
+ * MI += X_0 * Y_1 + X_1 * Y_0
+ * HI += X_1 * Y_1
+ *
+ * Later, the 256-bit result can be extracted as:
+ * [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
+ * This step is done when computing the polynomial reduction for efficiency
+ * reasons.
+ *
+ * If xor_sum == 1, then also XOR the value of SUM into m_0. This avoids an
+ * extra multiplication of SUM and h^8.
+ */
+.macro schoolbook1_iteration i xor_sum
+ movups (16*\i)(MSG), %xmm0
+ .if (\i == 0 && \xor_sum == 1)
+ pxor SUM, %xmm0
+ .endif
+ vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2
+ vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1
+ vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3
+ vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4
+ vpxor %xmm2, MI, MI
+ vpxor %xmm1, LO, LO
+ vpxor %xmm4, HI, HI
+ vpxor %xmm3, MI, MI
+.endm
+
+/*
+ * Performs the same computation as schoolbook1_iteration, except we expect the
+ * arguments to already be loaded into xmm0 and xmm1 and we set the result
+ * registers LO, MI, and HI directly rather than XOR'ing into them.
+ */
+.macro schoolbook1_noload
+ vpclmulqdq $0x01, %xmm0, %xmm1, MI
+ vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2
+ vpclmulqdq $0x00, %xmm0, %xmm1, LO
+ vpclmulqdq $0x11, %xmm0, %xmm1, HI
+ vpxor %xmm2, MI, MI
+.endm
+
+/*
+ * Computes the 256-bit polynomial represented by LO, HI, MI. Stores
+ * the result in PL, PH.
+ * [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
+ */
+.macro schoolbook2
+ vpslldq $8, MI, PL
+ vpsrldq $8, MI, PH
+ pxor LO, PL
+ pxor HI, PH
+.endm
+
+/*
+ * Computes the 128-bit reduction of PH : PL. Stores the result in dest.
+ *
+ * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
+ * x^128 + x^127 + x^126 + x^121 + 1.
+ *
+ * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
+ * product of two 128-bit polynomials in Montgomery form. We need to reduce it
+ * mod g(x). Also, since polynomials in Montgomery form have an "extra" factor
+ * of x^128, this product has two extra factors of x^128. To get it back into
+ * Montgomery form, we need to remove one of these factors by dividing by x^128.
+ *
+ * To accomplish both of these goals, we add multiples of g(x) that cancel out
+ * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
+ * bits are zero, the polynomial division by x^128 can be done by right shifting.
+ *
+ * Since the only nonzero term in the low 64 bits of g(x) is the constant term,
+ * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can
+ * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
+ * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to
+ * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
+ * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191.
+ *
+ * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
+ * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
+ * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
+ * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
+ * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
+ *
+ * So our final computation is:
+ * T = T_1 : T_0 = g*(x) * P_0
+ * V = V_1 : V_0 = g*(x) * (P_1 + T_0)
+ * p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
+ *
+ * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
+ * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
+ * T_1 into dest. This allows us to reuse P_1 + T_0 when computing V.
+ */
+.macro montgomery_reduction dest
+ vpclmulqdq $0x00, PL, GSTAR, TMP_XMM # TMP_XMM = T_1 : T_0 = P_0 * g*(x)
+ pshufd $0b01001110, TMP_XMM, TMP_XMM # TMP_XMM = T_0 : T_1
+ pxor PL, TMP_XMM # TMP_XMM = P_1 + T_0 : P_0 + T_1
+ pxor TMP_XMM, PH # PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
+ pclmulqdq $0x11, GSTAR, TMP_XMM # TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)]
+ vpxor TMP_XMM, PH, \dest
+.endm
+
+/*
+ * Compute schoolbook multiplication for 8 blocks
+ * m_0h^8 + ... + m_7h^1
+ *
+ * If reduce is set, also computes the montgomery reduction of the
+ * previous full_stride call and XORs with the first message block.
+ * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
+ * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
+ */
+.macro full_stride reduce
+ pxor LO, LO
+ pxor HI, HI
+ pxor MI, MI
+
+ schoolbook1_iteration 7 0
+ .if \reduce
+ vpclmulqdq $0x00, PL, GSTAR, TMP_XMM
+ .endif
+
+ schoolbook1_iteration 6 0
+ .if \reduce
+ pshufd $0b01001110, TMP_XMM, TMP_XMM
+ .endif
+
+ schoolbook1_iteration 5 0
+ .if \reduce
+ pxor PL, TMP_XMM
+ .endif
+
+ schoolbook1_iteration 4 0
+ .if \reduce
+ pxor TMP_XMM, PH
+ .endif
+
+ schoolbook1_iteration 3 0
+ .if \reduce
+ pclmulqdq $0x11, GSTAR, TMP_XMM
+ .endif
+
+ schoolbook1_iteration 2 0
+ .if \reduce
+ vpxor TMP_XMM, PH, SUM
+ .endif
+
+ schoolbook1_iteration 1 0
+
+ schoolbook1_iteration 0 1
+
+ addq $(8*16), MSG
+ schoolbook2
+.endm
+
+/*
+ * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS
+ */
+.macro partial_stride
+ mov BLOCKS_LEFT, TMP
+ shlq $4, TMP
+ addq $(16*STRIDE_BLOCKS), KEY_POWERS
+ subq TMP, KEY_POWERS
+
+ movups (MSG), %xmm0
+ pxor SUM, %xmm0
+ movups (KEY_POWERS), %xmm1
+ schoolbook1_noload
+ dec BLOCKS_LEFT
+ addq $16, MSG
+ addq $16, KEY_POWERS
+
+ test $4, BLOCKS_LEFT
+ jz .Lpartial4BlocksDone
+ schoolbook1 4
+ addq $(4*16), MSG
+ addq $(4*16), KEY_POWERS
+.Lpartial4BlocksDone:
+ test $2, BLOCKS_LEFT
+ jz .Lpartial2BlocksDone
+ schoolbook1 2
+ addq $(2*16), MSG
+ addq $(2*16), KEY_POWERS
+.Lpartial2BlocksDone:
+ test $1, BLOCKS_LEFT
+ jz .LpartialDone
+ schoolbook1 1
+.LpartialDone:
+ schoolbook2
+ montgomery_reduction SUM
+.endm
+
+/*
+ * Computes a = a * b * x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1.
+ *
+ * void polyval_mul_pclmul_avx(struct polyval_elem *a,
+ * const struct polyval_elem *b);
+ */
+SYM_FUNC_START(polyval_mul_pclmul_avx)
+ FRAME_BEGIN
+ vmovdqa .Lgstar(%rip), GSTAR
+ movups (%rdi), %xmm0
+ movups (%rsi), %xmm1
+ schoolbook1_noload
+ schoolbook2
+ montgomery_reduction SUM
+ movups SUM, (%rdi)
+ FRAME_END
+ RET
+SYM_FUNC_END(polyval_mul_pclmul_avx)
+
+/*
+ * Perform polynomial evaluation as specified by POLYVAL. This computes:
+ * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
+ * where n=nblocks, h is the hash key, and m_i are the message blocks.
+ *
+ * rdi - pointer to the accumulator
+ * rsi - pointer to precomputed key powers h^8 ... h^1
+ * rdx - pointer to message blocks
+ * rcx - number of blocks to hash
+ *
+ * void polyval_blocks_pclmul_avx(struct polyval_elem *acc,
+ * const struct polyval_key *key,
+ * const u8 *data, size_t nblocks);
+ */
+SYM_FUNC_START(polyval_blocks_pclmul_avx)
+ FRAME_BEGIN
+ vmovdqa .Lgstar(%rip), GSTAR
+ movups (ACCUMULATOR), SUM
+ subq $STRIDE_BLOCKS, BLOCKS_LEFT
+ js .LstrideLoopExit
+ full_stride 0
+ subq $STRIDE_BLOCKS, BLOCKS_LEFT
+ js .LstrideLoopExitReduce
+.LstrideLoop:
+ full_stride 1
+ subq $STRIDE_BLOCKS, BLOCKS_LEFT
+ jns .LstrideLoop
+.LstrideLoopExitReduce:
+ montgomery_reduction SUM
+.LstrideLoopExit:
+ add $STRIDE_BLOCKS, BLOCKS_LEFT
+ jz .LskipPartial
+ partial_stride
+.LskipPartial:
+ movups SUM, (ACCUMULATOR)
+ FRAME_END
+ RET
+SYM_FUNC_END(polyval_blocks_pclmul_avx)
diff --git a/lib/crypto/x86/polyval.h b/lib/crypto/x86/polyval.h
new file mode 100644
index 000000000000..ef8797521420
--- /dev/null
+++ b/lib/crypto/x86/polyval.h
@@ -0,0 +1,83 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * POLYVAL library functions, x86_64 optimized
+ *
+ * Copyright 2025 Google LLC
+ */
+#include <asm/fpu/api.h>
+#include <linux/cpufeature.h>
+
+#define NUM_H_POWERS 8
+
+static __ro_after_init DEFINE_STATIC_KEY_FALSE(have_pclmul_avx);
+
+asmlinkage void polyval_mul_pclmul_avx(struct polyval_elem *a,
+ const struct polyval_elem *b);
+asmlinkage void polyval_blocks_pclmul_avx(struct polyval_elem *acc,
+ const struct polyval_key *key,
+ const u8 *data, size_t nblocks);
+
+static void polyval_preparekey_arch(struct polyval_key *key,
+ const u8 raw_key[POLYVAL_BLOCK_SIZE])
+{
+ static_assert(ARRAY_SIZE(key->h_powers) == NUM_H_POWERS);
+ memcpy(&key->h_powers[NUM_H_POWERS - 1], raw_key, POLYVAL_BLOCK_SIZE);
+ if (static_branch_likely(&have_pclmul_avx) && irq_fpu_usable()) {
+ kernel_fpu_begin();
+ for (int i = NUM_H_POWERS - 2; i >= 0; i--) {
+ key->h_powers[i] = key->h_powers[i + 1];
+ polyval_mul_pclmul_avx(
+ &key->h_powers[i],
+ &key->h_powers[NUM_H_POWERS - 1]);
+ }
+ kernel_fpu_end();
+ } else {
+ for (int i = NUM_H_POWERS - 2; i >= 0; i--) {
+ key->h_powers[i] = key->h_powers[i + 1];
+ polyval_mul_generic(&key->h_powers[i],
+ &key->h_powers[NUM_H_POWERS - 1]);
+ }
+ }
+}
+
+static void polyval_mul_arch(struct polyval_elem *acc,
+ const struct polyval_key *key)
+{
+ if (static_branch_likely(&have_pclmul_avx) && irq_fpu_usable()) {
+ kernel_fpu_begin();
+ polyval_mul_pclmul_avx(acc, &key->h_powers[NUM_H_POWERS - 1]);
+ kernel_fpu_end();
+ } else {
+ polyval_mul_generic(acc, &key->h_powers[NUM_H_POWERS - 1]);
+ }
+}
+
+static void polyval_blocks_arch(struct polyval_elem *acc,
+ const struct polyval_key *key,
+ const u8 *data, size_t nblocks)
+{
+ if (static_branch_likely(&have_pclmul_avx) && irq_fpu_usable()) {
+ do {
+ /* Allow rescheduling every 4 KiB. */
+ size_t n = min_t(size_t, nblocks,
+ 4096 / POLYVAL_BLOCK_SIZE);
+
+ kernel_fpu_begin();
+ polyval_blocks_pclmul_avx(acc, key, data, n);
+ kernel_fpu_end();
+ data += n * POLYVAL_BLOCK_SIZE;
+ nblocks -= n;
+ } while (nblocks);
+ } else {
+ polyval_blocks_generic(acc, &key->h_powers[NUM_H_POWERS - 1],
+ data, nblocks);
+ }
+}
+
+#define polyval_mod_init_arch polyval_mod_init_arch
+static void polyval_mod_init_arch(void)
+{
+ if (boot_cpu_has(X86_FEATURE_PCLMULQDQ) &&
+ boot_cpu_has(X86_FEATURE_AVX))
+ static_branch_enable(&have_pclmul_avx);
+}