summaryrefslogtreecommitdiff
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
authorShakeel Butt <shakeel.butt@linux.dev>2025-04-19 11:35:45 -0700
committerAndrew Morton <akpm@linux-foundation.org>2025-05-12 23:50:35 -0700
commitc8e6002bd611c68dab892565039b60c7ad5b8d6a (patch)
treeee001f727e46d981893e59a7c94b2dc0b7b664a7 /mm/memcontrol.c
parent8d88b0769e256c238f80615f08fc5b7aebc29439 (diff)
memcg: introduce non-blocking limit setting option
Setting the max and high limits can trigger synchronous reclaim and/or oom-kill if the usage is higher than the given limit. This behavior is fine for newly created cgroups but it can cause issues for the node controller while setting limits for existing cgroups. In our production multi-tenant and overcommitted environment, we are seeing priority inversion when the node controller dynamically adjusts the limits of running jobs of different priorities. Based on the system situation, the node controller may reduce the limits of lower priority jobs and increase the limits of higher priority jobs. However we are seeing node controller getting stuck for long period of time while reclaiming from lower priority jobs while setting their limits and also spends a lot of its own CPU. One of the workaround we are trying is to fork a new process which sets the limit of the lower priority job along with setting an alarm to get itself killed if it get stuck in the reclaim for lower priority job. However we are finding it very unreliable and costly. Either we need a good enough time buffer for the alarm to be delivered after setting limit and potentialy spend a lot of CPU in the reclaim or be unreliable in setting the limit for much shorter but cheaper (less reclaim) alarms. Let's introduce new limit setting option which does not trigger reclaim and/or oom-kill and let the processes in the target cgroup to trigger reclaim and/or throttling and/or oom-kill in their next charge request. This will make the node controller on multi-tenant overcommitted environment much more reliable. Explanation from Johannes on side-effects of O_NONBLOCK limit change: It's usually the allocating tasks inside the group bearing the cost of limit enforcement and reclaim. This allows a (privileged) updater from outside the group to keep that cost in there - instead of having to help, from a context that doesn't necessarily make sense. I suppose the tradeoff with that - and the reason why this was doing sync reclaim in the first place - is that, if the group is idle and not trying to allocate more, it can take indefinitely for the new limit to actually be met. It should be okay in most scenarios in practice. As the capacity is reallocated from group A to B, B will exert pressure on A once it tries to claim it and thereby shrink it down. If A is idle, that shouldn't be hard. If A is running, it's likely to fault/allocate soon-ish and then join the effort. It does leave a (malicious) corner case where A is just busy-hitting its memory to interfere with the clawback. This is comparable to reclaiming memory.low overage from the outside, though, which is an acceptable risk. Users of O_NONBLOCK just need to be aware. Link: https://lkml.kernel.org/r/20250419183545.1982187-1-shakeel.butt@linux.dev Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michal Koutný <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Tejun Heo <tj@kernel.org> Cc: Christian Brauner <brauner@kernel.org> Cc: Yosry Ahmed <yosry.ahmed@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c10
1 files changed, 8 insertions, 2 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 8ed265852423..d3b6f50e00d4 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -4269,6 +4269,9 @@ static ssize_t memory_high_write(struct kernfs_open_file *of,
page_counter_set_high(&memcg->memory, high);
+ if (of->file->f_flags & O_NONBLOCK)
+ goto out;
+
for (;;) {
unsigned long nr_pages = page_counter_read(&memcg->memory);
unsigned long reclaimed;
@@ -4291,7 +4294,7 @@ static ssize_t memory_high_write(struct kernfs_open_file *of,
if (!reclaimed && !nr_retries--)
break;
}
-
+out:
memcg_wb_domain_size_changed(memcg);
return nbytes;
}
@@ -4318,6 +4321,9 @@ static ssize_t memory_max_write(struct kernfs_open_file *of,
xchg(&memcg->memory.max, max);
+ if (of->file->f_flags & O_NONBLOCK)
+ goto out;
+
for (;;) {
unsigned long nr_pages = page_counter_read(&memcg->memory);
@@ -4345,7 +4351,7 @@ static ssize_t memory_max_write(struct kernfs_open_file *of,
break;
cond_resched();
}
-
+out:
memcg_wb_domain_size_changed(memcg);
return nbytes;
}