summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--arch/x86/include/asm/cpufeatures.h5
-rw-r--r--arch/x86/include/asm/hardirq.h4
-rw-r--r--arch/x86/include/asm/kvm_host.h7
-rw-r--r--arch/x86/include/asm/nospec-branch.h30
-rw-r--r--arch/x86/kernel/cpu/bugs.c22
-rw-r--r--arch/x86/kvm/emulate.c319
-rw-r--r--arch/x86/kvm/fpu.h66
-rw-r--r--arch/x86/kvm/hyperv.c2
-rw-r--r--arch/x86/kvm/kvm_emulate.h20
-rw-r--r--arch/x86/kvm/lapic.c44
-rw-r--r--arch/x86/kvm/mmu.h2
-rw-r--r--arch/x86/kvm/mmu/mmu.c2
-rw-r--r--arch/x86/kvm/mmu/paging_tmpl.h2
-rw-r--r--arch/x86/kvm/mmu/spte.c2
-rw-r--r--arch/x86/kvm/svm/svm.c27
-rw-r--r--arch/x86/kvm/svm/vmenter.S6
-rw-r--r--arch/x86/kvm/vmx/nested.c2
-rw-r--r--arch/x86/kvm/vmx/run_flags.h10
-rw-r--r--arch/x86/kvm/vmx/tdx.c65
-rw-r--r--arch/x86/kvm/vmx/tdx.h1
-rw-r--r--arch/x86/kvm/vmx/vmenter.S31
-rw-r--r--arch/x86/kvm/vmx/vmx.c264
-rw-r--r--arch/x86/kvm/x86.c251
-rw-r--r--arch/x86/kvm/x86.h16
24 files changed, 703 insertions, 497 deletions
diff --git a/arch/x86/include/asm/cpufeatures.h b/arch/x86/include/asm/cpufeatures.h
index 4091a776e37a..fc5698844a0b 100644
--- a/arch/x86/include/asm/cpufeatures.h
+++ b/arch/x86/include/asm/cpufeatures.h
@@ -499,6 +499,11 @@
#define X86_FEATURE_IBPB_EXIT_TO_USER (21*32+14) /* Use IBPB on exit-to-userspace, see VMSCAPE bug */
#define X86_FEATURE_ABMC (21*32+15) /* Assignable Bandwidth Monitoring Counters */
#define X86_FEATURE_MSR_IMM (21*32+16) /* MSR immediate form instructions */
+#define X86_FEATURE_CLEAR_CPU_BUF_VM_MMIO (21*32+17) /*
+ * Clear CPU buffers before VM-Enter if the vCPU
+ * can access host MMIO (ignored for all intents
+ * and purposes if CLEAR_CPU_BUF_VM is set).
+ */
/*
* BUG word(s)
diff --git a/arch/x86/include/asm/hardirq.h b/arch/x86/include/asm/hardirq.h
index f00c09ffe6a9..6b6d472baa0b 100644
--- a/arch/x86/include/asm/hardirq.h
+++ b/arch/x86/include/asm/hardirq.h
@@ -5,7 +5,7 @@
#include <linux/threads.h>
typedef struct {
-#if IS_ENABLED(CONFIG_KVM_INTEL)
+#if IS_ENABLED(CONFIG_CPU_MITIGATIONS) && IS_ENABLED(CONFIG_KVM_INTEL)
u8 kvm_cpu_l1tf_flush_l1d;
#endif
unsigned int __nmi_count; /* arch dependent */
@@ -68,7 +68,7 @@ extern u64 arch_irq_stat(void);
DECLARE_PER_CPU_CACHE_HOT(u16, __softirq_pending);
#define local_softirq_pending_ref __softirq_pending
-#if IS_ENABLED(CONFIG_KVM_INTEL)
+#if IS_ENABLED(CONFIG_CPU_MITIGATIONS) && IS_ENABLED(CONFIG_KVM_INTEL)
/*
* This function is called from noinstr interrupt contexts
* and must be inlined to not get instrumentation.
diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h
index 48598d017d6f..103af57e1060 100644
--- a/arch/x86/include/asm/kvm_host.h
+++ b/arch/x86/include/asm/kvm_host.h
@@ -1055,9 +1055,6 @@ struct kvm_vcpu_arch {
/* be preempted when it's in kernel-mode(cpl=0) */
bool preempted_in_kernel;
- /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
- bool l1tf_flush_l1d;
-
/* Host CPU on which VM-entry was most recently attempted */
int last_vmentry_cpu;
@@ -1456,8 +1453,6 @@ struct kvm_arch {
bool use_master_clock;
u64 master_kernel_ns;
u64 master_cycle_now;
- struct delayed_work kvmclock_update_work;
- struct delayed_work kvmclock_sync_work;
#ifdef CONFIG_KVM_HYPERV
struct kvm_hv hyperv;
@@ -2167,6 +2162,7 @@ void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
+void kvm_prepare_unexpected_reason_exit(struct kvm_vcpu *vcpu, u64 exit_reason);
void kvm_enable_efer_bits(u64);
bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
@@ -2378,7 +2374,6 @@ int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
int kvm_add_user_return_msr(u32 msr);
int kvm_find_user_return_msr(u32 msr);
int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
-void kvm_user_return_msr_update_cache(unsigned int index, u64 val);
u64 kvm_get_user_return_msr(unsigned int slot);
static inline bool kvm_is_supported_user_return_msr(u32 msr)
diff --git a/arch/x86/include/asm/nospec-branch.h b/arch/x86/include/asm/nospec-branch.h
index 08ed5a2e46a5..a6526c5be5ca 100644
--- a/arch/x86/include/asm/nospec-branch.h
+++ b/arch/x86/include/asm/nospec-branch.h
@@ -308,24 +308,26 @@
* CFLAGS.ZF.
* Note: Only the memory operand variant of VERW clears the CPU buffers.
*/
-.macro __CLEAR_CPU_BUFFERS feature
#ifdef CONFIG_X86_64
- ALTERNATIVE "", "verw x86_verw_sel(%rip)", \feature
+#define VERW verw x86_verw_sel(%rip)
#else
- /*
- * In 32bit mode, the memory operand must be a %cs reference. The data
- * segments may not be usable (vm86 mode), and the stack segment may not
- * be flat (ESPFIX32).
- */
- ALTERNATIVE "", "verw %cs:x86_verw_sel", \feature
+/*
+ * In 32bit mode, the memory operand must be a %cs reference. The data segments
+ * may not be usable (vm86 mode), and the stack segment may not be flat (ESPFIX32).
+ */
+#define VERW verw %cs:x86_verw_sel
#endif
-.endm
-#define CLEAR_CPU_BUFFERS \
- __CLEAR_CPU_BUFFERS X86_FEATURE_CLEAR_CPU_BUF
+/*
+ * Provide a stringified VERW macro for simple usage, and a non-stringified
+ * VERW macro for use in more elaborate sequences, e.g. to encode a conditional
+ * VERW within an ALTERNATIVE.
+ */
+#define __CLEAR_CPU_BUFFERS __stringify(VERW)
-#define VM_CLEAR_CPU_BUFFERS \
- __CLEAR_CPU_BUFFERS X86_FEATURE_CLEAR_CPU_BUF_VM
+/* If necessary, emit VERW on exit-to-userspace to clear CPU buffers. */
+#define CLEAR_CPU_BUFFERS \
+ ALTERNATIVE "", __CLEAR_CPU_BUFFERS, X86_FEATURE_CLEAR_CPU_BUF
#ifdef CONFIG_X86_64
.macro CLEAR_BRANCH_HISTORY
@@ -580,8 +582,6 @@ DECLARE_STATIC_KEY_FALSE(cpu_buf_idle_clear);
DECLARE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
-DECLARE_STATIC_KEY_FALSE(cpu_buf_vm_clear);
-
extern u16 x86_verw_sel;
#include <asm/segment.h>
diff --git a/arch/x86/kernel/cpu/bugs.c b/arch/x86/kernel/cpu/bugs.c
index d7fa03bf51b4..70bb48ab46d7 100644
--- a/arch/x86/kernel/cpu/bugs.c
+++ b/arch/x86/kernel/cpu/bugs.c
@@ -192,14 +192,6 @@ EXPORT_SYMBOL_GPL(cpu_buf_idle_clear);
*/
DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
-/*
- * Controls CPU Fill buffer clear before VMenter. This is a subset of
- * X86_FEATURE_CLEAR_CPU_BUF, and should only be enabled when KVM-only
- * mitigation is required.
- */
-DEFINE_STATIC_KEY_FALSE(cpu_buf_vm_clear);
-EXPORT_SYMBOL_GPL(cpu_buf_vm_clear);
-
#undef pr_fmt
#define pr_fmt(fmt) "mitigations: " fmt
@@ -489,8 +481,8 @@ static enum rfds_mitigations rfds_mitigation __ro_after_init =
IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_AUTO : RFDS_MITIGATION_OFF;
/*
- * Set if any of MDS/TAA/MMIO/RFDS are going to enable VERW clearing
- * through X86_FEATURE_CLEAR_CPU_BUF on kernel and guest entry.
+ * Set if any of MDS/TAA/MMIO/RFDS are going to enable VERW clearing on exit to
+ * userspace *and* on entry to KVM guests.
*/
static bool verw_clear_cpu_buf_mitigation_selected __ro_after_init;
@@ -536,6 +528,7 @@ static void __init mds_apply_mitigation(void)
if (mds_mitigation == MDS_MITIGATION_FULL ||
mds_mitigation == MDS_MITIGATION_VMWERV) {
setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
+ setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
(mds_nosmt || smt_mitigations == SMT_MITIGATIONS_ON))
cpu_smt_disable(false);
@@ -647,6 +640,7 @@ static void __init taa_apply_mitigation(void)
* present on host, enable the mitigation for UCODE_NEEDED as well.
*/
setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
+ setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
if (taa_nosmt || smt_mitigations == SMT_MITIGATIONS_ON)
cpu_smt_disable(false);
@@ -748,9 +742,9 @@ static void __init mmio_apply_mitigation(void)
*/
if (verw_clear_cpu_buf_mitigation_selected) {
setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
- static_branch_disable(&cpu_buf_vm_clear);
+ setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
} else {
- static_branch_enable(&cpu_buf_vm_clear);
+ setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM_MMIO);
}
/*
@@ -839,8 +833,10 @@ static void __init rfds_update_mitigation(void)
static void __init rfds_apply_mitigation(void)
{
- if (rfds_mitigation == RFDS_MITIGATION_VERW)
+ if (rfds_mitigation == RFDS_MITIGATION_VERW) {
setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
+ setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
+ }
}
static __init int rfds_parse_cmdline(char *str)
diff --git a/arch/x86/kvm/emulate.c b/arch/x86/kvm/emulate.c
index 4e3da5b497b8..c8e292e9a24d 100644
--- a/arch/x86/kvm/emulate.c
+++ b/arch/x86/kvm/emulate.c
@@ -81,9 +81,8 @@
*/
/* Operand sizes: 8-bit operands or specified/overridden size. */
-#define ByteOp (1<<0) /* 8-bit operands. */
-/* Destination operand type. */
-#define DstShift 1
+#define ByteOp (1<<0) /* 8-bit operands. */
+#define DstShift 1 /* Destination operand type at bits 1-5 */
#define ImplicitOps (OpImplicit << DstShift)
#define DstReg (OpReg << DstShift)
#define DstMem (OpMem << DstShift)
@@ -95,8 +94,7 @@
#define DstDX (OpDX << DstShift)
#define DstAccLo (OpAccLo << DstShift)
#define DstMask (OpMask << DstShift)
-/* Source operand type. */
-#define SrcShift 6
+#define SrcShift 6 /* Source operand type at bits 6-10 */
#define SrcNone (OpNone << SrcShift)
#define SrcReg (OpReg << SrcShift)
#define SrcMem (OpMem << SrcShift)
@@ -119,10 +117,10 @@
#define SrcAccHi (OpAccHi << SrcShift)
#define SrcMask (OpMask << SrcShift)
#define BitOp (1<<11)
-#define MemAbs (1<<12) /* Memory operand is absolute displacement */
+#define MemAbs (1<<12) /* Memory operand is absolute displacement */
#define String (1<<13) /* String instruction (rep capable) */
#define Stack (1<<14) /* Stack instruction (push/pop) */
-#define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
+#define GroupMask (7<<15) /* Group mechanisms, at bits 15-17 */
#define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
#define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
#define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
@@ -131,11 +129,8 @@
#define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
#define ModeDual (7<<15) /* Different instruction for 32/64 bit */
#define Sse (1<<18) /* SSE Vector instruction */
-/* Generic ModRM decode. */
-#define ModRM (1<<19)
-/* Destination is only written; never read. */
-#define Mov (1<<20)
-/* Misc flags */
+#define ModRM (1<<19) /* Generic ModRM decode. */
+#define Mov (1<<20) /* Destination is only written; never read. */
#define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
#define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
#define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
@@ -143,11 +138,11 @@
#define Undefined (1<<25) /* No Such Instruction */
#define Lock (1<<26) /* lock prefix is allowed for the instruction */
#define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
-#define No64 (1<<28)
+#define No64 (1<<28) /* Instruction generates #UD in 64-bit mode */
#define PageTable (1 << 29) /* instruction used to write page table */
#define NotImpl (1 << 30) /* instruction is not implemented */
-/* Source 2 operand type */
-#define Src2Shift (31)
+#define Avx ((u64)1 << 31) /* Instruction uses VEX prefix */
+#define Src2Shift (32) /* Source 2 operand type at bits 32-36 */
#define Src2None (OpNone << Src2Shift)
#define Src2Mem (OpMem << Src2Shift)
#define Src2CL (OpCL << Src2Shift)
@@ -161,12 +156,13 @@
#define Src2FS (OpFS << Src2Shift)
#define Src2GS (OpGS << Src2Shift)
#define Src2Mask (OpMask << Src2Shift)
+/* free: 37-39 */
#define Mmx ((u64)1 << 40) /* MMX Vector instruction */
-#define AlignMask ((u64)7 << 41)
+#define AlignMask ((u64)3 << 41) /* Memory alignment requirement at bits 41-42 */
#define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
#define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */
-#define Avx ((u64)3 << 41) /* Advanced Vector Extensions */
-#define Aligned16 ((u64)4 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */
+#define Aligned16 ((u64)3 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */
+/* free: 43-44 */
#define NoWrite ((u64)1 << 45) /* No writeback */
#define SrcWrite ((u64)1 << 46) /* Write back src operand */
#define NoMod ((u64)1 << 47) /* Mod field is ignored */
@@ -243,6 +239,13 @@ enum x86_transfer_type {
X86_TRANSFER_TASK_SWITCH,
};
+enum rex_bits {
+ REX_B = 1,
+ REX_X = 2,
+ REX_R = 4,
+ REX_W = 8,
+};
+
static void writeback_registers(struct x86_emulate_ctxt *ctxt)
{
unsigned long dirty = ctxt->regs_dirty;
@@ -622,7 +625,6 @@ static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
switch (alignment) {
case Unaligned:
- case Avx:
return 1;
case Aligned16:
return 16;
@@ -924,7 +926,7 @@ static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
int byteop)
{
void *p;
- int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
+ int highbyte_regs = (ctxt->rex_prefix == REX_NONE) && byteop;
if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
@@ -1030,6 +1032,7 @@ static void fetch_register_operand(struct operand *op)
op->val = *(u64 *)op->addr.reg;
break;
}
+ op->orig_val = op->val;
}
static int em_fninit(struct x86_emulate_ctxt *ctxt)
@@ -1075,17 +1078,17 @@ static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
return X86EMUL_CONTINUE;
}
-static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
- struct operand *op)
+static void __decode_register_operand(struct x86_emulate_ctxt *ctxt,
+ struct operand *op, int reg)
{
- unsigned int reg;
-
- if (ctxt->d & ModRM)
- reg = ctxt->modrm_reg;
- else
- reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
-
- if (ctxt->d & Sse) {
+ if ((ctxt->d & Avx) && ctxt->op_bytes == 32) {
+ op->type = OP_YMM;
+ op->bytes = 32;
+ op->addr.xmm = reg;
+ kvm_read_avx_reg(reg, &op->vec_val2);
+ return;
+ }
+ if (ctxt->d & (Avx|Sse)) {
op->type = OP_XMM;
op->bytes = 16;
op->addr.xmm = reg;
@@ -1103,9 +1106,20 @@ static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
op->type = OP_REG;
op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
-
fetch_register_operand(op);
- op->orig_val = op->val;
+}
+
+static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
+ struct operand *op)
+{
+ unsigned int reg;
+
+ if (ctxt->d & ModRM)
+ reg = ctxt->modrm_reg;
+ else
+ reg = (ctxt->b & 7) | (ctxt->rex_bits & REX_B ? 8 : 0);
+
+ __decode_register_operand(ctxt, op, reg);
}
static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
@@ -1122,9 +1136,9 @@ static int decode_modrm(struct x86_emulate_ctxt *ctxt,
int rc = X86EMUL_CONTINUE;
ulong modrm_ea = 0;
- ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
- index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
- base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
+ ctxt->modrm_reg = (ctxt->rex_bits & REX_R ? 8 : 0);
+ index_reg = (ctxt->rex_bits & REX_X ? 8 : 0);
+ base_reg = (ctxt->rex_bits & REX_B ? 8 : 0);
ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
@@ -1132,24 +1146,7 @@ static int decode_modrm(struct x86_emulate_ctxt *ctxt,
ctxt->modrm_seg = VCPU_SREG_DS;
if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
- op->type = OP_REG;
- op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
- op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
- ctxt->d & ByteOp);
- if (ctxt->d & Sse) {
- op->type = OP_XMM;
- op->bytes = 16;
- op->addr.xmm = ctxt->modrm_rm;
- kvm_read_sse_reg(ctxt->modrm_rm, &op->vec_val);
- return rc;
- }
- if (ctxt->d & Mmx) {
- op->type = OP_MM;
- op->bytes = 8;
- op->addr.mm = ctxt->modrm_rm & 7;
- return rc;
- }
- fetch_register_operand(op);
+ __decode_register_operand(ctxt, op, ctxt->modrm_rm);
return rc;
}
@@ -1783,7 +1780,15 @@ static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
op->data,
op->bytes * op->count);
case OP_XMM:
- kvm_write_sse_reg(op->addr.xmm, &op->vec_val);
+ if (!(ctxt->d & Avx)) {
+ kvm_write_sse_reg(op->addr.xmm, &op->vec_val);
+ break;
+ }
+ /* full YMM write but with high bytes cleared */
+ memset(op->valptr + 16, 0, 16);
+ fallthrough;
+ case OP_YMM:
+ kvm_write_avx_reg(op->addr.xmm, &op->vec_val2);
break;
case OP_MM:
kvm_write_mmx_reg(op->addr.mm, &op->mm_val);
@@ -2466,7 +2471,7 @@ static int em_sysexit(struct x86_emulate_ctxt *ctxt)
setup_syscalls_segments(&cs, &ss);
- if ((ctxt->rex_prefix & 0x8) != 0x0)
+ if (ctxt->rex_bits & REX_W)
usermode = X86EMUL_MODE_PROT64;
else
usermode = X86EMUL_MODE_PROT32;
@@ -3958,6 +3963,8 @@ static int check_perm_out(struct x86_emulate_ctxt *ctxt)
I2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
I2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
+static const struct opcode ud = I(SrcNone, emulate_ud);
+
static const struct opcode group7_rm0[] = {
N,
I(SrcNone | Priv | EmulateOnUD, em_hypercall),
@@ -4114,7 +4121,7 @@ static const struct group_dual group15 = { {
} };
static const struct gprefix pfx_0f_6f_0f_7f = {
- I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
+ I(Mmx, em_mov), I(Sse | Avx | Aligned, em_mov), N, I(Sse | Avx | Unaligned, em_mov),
};
static const struct instr_dual instr_dual_0f_2b = {
@@ -4133,8 +4140,8 @@ static const struct gprefix pfx_0f_28_0f_29 = {
I(Aligned, em_mov), I(Aligned, em_mov), N, N,
};
-static const struct gprefix pfx_0f_e7 = {
- N, I(Sse, em_mov), N, N,
+static const struct gprefix pfx_0f_e7_0f_38_2a = {
+ N, I(Sse | Avx, em_mov), N, N,
};
static const struct escape escape_d9 = { {
@@ -4347,8 +4354,8 @@ static const struct opcode twobyte_table[256] = {
DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
/* 0x10 - 0x1F */
- GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_10_0f_11),
- GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_10_0f_11),
+ GP(ModRM | DstReg | SrcMem | Mov | Sse | Avx, &pfx_0f_10_0f_11),
+ GP(ModRM | DstMem | SrcReg | Mov | Sse | Avx, &pfx_0f_10_0f_11),
N, N, N, N, N, N,
D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */
D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
@@ -4364,9 +4371,9 @@ static const struct opcode twobyte_table[256] = {
IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
check_dr_write),
N, N, N, N,
- GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
- GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
- N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
+ GP(ModRM | DstReg | SrcMem | Mov | Sse | Avx, &pfx_0f_28_0f_29),
+ GP(ModRM | DstMem | SrcReg | Mov | Sse | Avx, &pfx_0f_28_0f_29),
+ N, GP(ModRM | DstMem | SrcReg | Mov | Sse | Avx, &pfx_0f_2b),
N, N, N, N,
/* 0x30 - 0x3F */
II(ImplicitOps | Priv, em_wrmsr, wrmsr),
@@ -4431,7 +4438,7 @@ static const struct opcode twobyte_table[256] = {
/* 0xD0 - 0xDF */
N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
/* 0xE0 - 0xEF */
- N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
+ N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7_0f_38_2a),
N, N, N, N, N, N, N, N,
/* 0xF0 - 0xFF */
N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
@@ -4458,8 +4465,13 @@ static const struct gprefix three_byte_0f_38_f1 = {
* byte.
*/
static const struct opcode opcode_map_0f_38[256] = {
- /* 0x00 - 0x7f */
- X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
+ /* 0x00 - 0x1f */
+ X16(N), X16(N),
+ /* 0x20 - 0x2f */
+ X8(N),
+ X2(N), GP(SrcReg | DstMem | ModRM | Mov | Aligned, &pfx_0f_e7_0f_38_2a), N, N, N, N, N,
+ /* 0x30 - 0x7f */
+ X16(N), X16(N), X16(N), X16(N), X16(N),
/* 0x80 - 0xef */
X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
/* 0xf0 - 0xf1 */
@@ -4618,14 +4630,12 @@ static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
fetch_register_operand(op);
- op->orig_val = op->val;
break;
case OpAccLo:
op->type = OP_REG;
op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
fetch_register_operand(op);
- op->orig_val = op->val;
break;
case OpAccHi:
if (ctxt->d & ByteOp) {
@@ -4636,7 +4646,6 @@ static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
op->bytes = ctxt->op_bytes;
op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
fetch_register_operand(op);
- op->orig_val = op->val;
break;
case OpDI:
op->type = OP_MEM;
@@ -4755,12 +4764,87 @@ done:
return rc;
}
+static int x86_decode_avx(struct x86_emulate_ctxt *ctxt,
+ u8 vex_1st, u8 vex_2nd, struct opcode *opcode)
+{
+ u8 vex_3rd, map, pp, l, v;
+ int rc = X86EMUL_CONTINUE;
+
+ if (ctxt->rep_prefix || ctxt->op_prefix || ctxt->rex_prefix)
+ goto ud;
+
+ if (vex_1st == 0xc5) {
+ /* Expand RVVVVlpp to VEX3 format */
+ vex_3rd = vex_2nd & ~0x80; /* VVVVlpp from VEX2, w=0 */
+ vex_2nd = (vex_2nd & 0x80) | 0x61; /* R from VEX2, X=1 B=1 mmmmm=00001 */
+ } else {
+ vex_3rd = insn_fetch(u8, ctxt);
+ }
+
+ /* vex_2nd = RXBmmmmm, vex_3rd = wVVVVlpp. Fix polarity */
+ vex_2nd ^= 0xE0; /* binary 11100000 */
+ vex_3rd ^= 0x78; /* binary 01111000 */
+
+ ctxt->rex_prefix = REX_PREFIX;
+ ctxt->rex_bits = (vex_2nd & 0xE0) >> 5; /* RXB */
+ ctxt->rex_bits |= (vex_3rd & 0x80) >> 4; /* w */
+ if (ctxt->rex_bits && ctxt->mode != X86EMUL_MODE_PROT64)
+ goto ud;
+
+ map = vex_2nd & 0x1f;
+ v = (vex_3rd >> 3) & 0xf;
+ l = vex_3rd & 0x4;
+ pp = vex_3rd & 0x3;
+
+ ctxt->b = insn_fetch(u8, ctxt);
+ switch (map) {
+ case 1:
+ ctxt->opcode_len = 2;
+ *opcode = twobyte_table[ctxt->b];
+ break;
+ case 2:
+ ctxt->opcode_len = 3;
+ *opcode = opcode_map_0f_38[ctxt->b];
+ break;
+ case 3:
+ /* no 0f 3a instructions are supported yet */
+ return X86EMUL_UNHANDLEABLE;
+ default:
+ goto ud;
+ }
+
+ /*
+ * No three operand instructions are supported yet; those that
+ * *are* marked with the Avx flag reserve the VVVV flag.
+ */
+ if (v)
+ goto ud;
+
+ if (l)
+ ctxt->op_bytes = 32;
+ else
+ ctxt->op_bytes = 16;
+
+ switch (pp) {
+ case 0: break;
+ case 1: ctxt->op_prefix = true; break;
+ case 2: ctxt->rep_prefix = 0xf3; break;
+ case 3: ctxt->rep_prefix = 0xf2; break;
+ }
+
+done:
+ return rc;
+ud:
+ *opcode = ud;
+ return rc;
+}
+
int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type)
{
int rc = X86EMUL_CONTINUE;
int mode = ctxt->mode;
int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
- bool op_prefix = false;
+ bool vex_prefix = false;
bool has_seg_override = false;
struct opcode opcode;
u16 dummy;
@@ -4812,7 +4896,7 @@ int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int
for (;;) {
switch (ctxt->b = insn_fetch(u8, ctxt)) {
case 0x66: /* operand-size override */
- op_prefix = true;
+ ctxt->op_prefix = true;
/* switch between 2/4 bytes */
ctxt->op_bytes = def_op_bytes ^ 6;
break;
@@ -4851,7 +4935,8 @@ int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int
case 0x40 ... 0x4f: /* REX */
if (mode != X86EMUL_MODE_PROT64)
goto done_prefixes;
- ctxt->rex_prefix = ctxt->b;
+ ctxt->rex_prefix = REX_PREFIX;
+ ctxt->rex_bits = ctxt->b & 0xf;
continue;
case 0xf0: /* LOCK */
ctxt->lock_prefix = 1;
@@ -4865,20 +4950,33 @@ int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int
}
/* Any legacy prefix after a REX prefix nullifies its effect. */
-
- ctxt->rex_prefix = 0;
+ ctxt->rex_prefix = REX_NONE;
+ ctxt->rex_bits = 0;
}
done_prefixes:
/* REX prefix. */
- if (ctxt->rex_prefix & 8)
- ctxt->op_bytes = 8; /* REX.W */
+ if (ctxt->rex_bits & REX_W)
+ ctxt->op_bytes = 8;
/* Opcode byte(s). */
- opcode = opcode_table[ctxt->b];
- /* Two-byte opcode? */
- if (ctxt->b == 0x0f) {
+ if (ctxt->b == 0xc4 || ctxt->b == 0xc5) {
+ /* VEX or LDS/LES */
+ u8 vex_2nd = insn_fetch(u8, ctxt);
+ if (mode != X86EMUL_MODE_PROT64 && (vex_2nd & 0xc0) != 0xc0) {
+ opcode = opcode_table[ctxt->b];
+ ctxt->modrm = vex_2nd;
+ /* the Mod/RM byte has been fetched already! */
+ goto done_modrm;
+ }
+
+ vex_prefix = true;
+ rc = x86_decode_avx(ctxt, ctxt->b, vex_2nd, &opcode);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+ } else if (ctxt->b == 0x0f) {
+ /* Two- or three-byte opcode */
ctxt->opcode_len = 2;
ctxt->b = insn_fetch(u8, ctxt);
opcode = twobyte_table[ctxt->b];
@@ -4889,18 +4987,16 @@ done_prefixes:
ctxt->b = insn_fetch(u8, ctxt);
opcode = opcode_map_0f_38[ctxt->b];
}
+ } else {
+ /* Opcode byte(s). */
+ opcode = opcode_table[ctxt->b];
}
- ctxt->d = opcode.flags;
- if (ctxt->d & ModRM)
+ if (opcode.flags & ModRM)
ctxt->modrm = insn_fetch(u8, ctxt);
- /* vex-prefix instructions are not implemented */
- if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
- (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
- ctxt->d = NotImpl;
- }
-
+done_modrm:
+ ctxt->d = opcode.flags;
while (ctxt->d & GroupMask) {
switch (ctxt->d & GroupMask) {
case Group:
@@ -4919,9 +5015,9 @@ done_prefixes:
opcode = opcode.u.group[goffset];
break;
case Prefix:
- if (ctxt->rep_prefix && op_prefix)
+ if (ctxt->rep_prefix && ctxt->op_prefix)
return EMULATION_FAILED;
- simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
+ simd_prefix = ctxt->op_prefix ? 0x66 : ctxt->rep_prefix;
switch (simd_prefix) {
case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
@@ -4966,6 +5062,19 @@ done_prefixes:
if (ctxt->d == 0)
return EMULATION_FAILED;
+ if (unlikely(vex_prefix)) {
+ /*
+ * Only specifically marked instructions support VEX. Since many
+ * instructions support it but are not annotated, return not implemented
+ * rather than #UD.
+ */
+ if (!(ctxt->d & Avx))
+ return EMULATION_FAILED;
+
+ if (!(ctxt->d & AlignMask))
+ ctxt->d |= Unaligned;
+ }
+
ctxt->execute = opcode.u.execute;
/*
@@ -5036,8 +5145,10 @@ done_prefixes:
if ((ctxt->d & No16) && ctxt->op_bytes == 2)
ctxt->op_bytes = 4;
- if (ctxt->d & Sse)
- ctxt->op_bytes = 16;
+ if (vex_prefix)
+ ;
+ else if (ctxt->d & Sse)
+ ctxt->op_bytes = 16, ctxt->d &= ~Avx;
else if (ctxt->d & Mmx)
ctxt->op_bytes = 8;
}
@@ -5137,8 +5248,10 @@ void init_decode_cache(struct x86_emulate_ctxt *ctxt)
{
/* Clear fields that are set conditionally but read without a guard. */
ctxt->rip_relative = false;
- ctxt->rex_prefix = 0;
+ ctxt->rex_prefix = REX_NONE;
+ ctxt->rex_bits = 0;
ctxt->lock_prefix = 0;
+ ctxt->op_prefix = false;
ctxt->rep_prefix = 0;
ctxt->regs_valid = 0;
ctxt->regs_dirty = 0;
@@ -5168,20 +5281,34 @@ int x86_emulate_insn(struct x86_emulate_ctxt *ctxt, bool check_intercepts)
}
if (unlikely(ctxt->d &
- (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
+ (No64|Undefined|Avx|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
(ctxt->d & Undefined)) {
rc = emulate_ud(ctxt);
goto done;
}
- if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
- || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
+ if ((ctxt->d & (Avx|Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM))) {
rc = emulate_ud(ctxt);
goto done;
}
- if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
+ if (ctxt->d & Avx) {
+ u64 xcr = 0;
+ if (!(ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE)
+ || ops->get_xcr(ctxt, 0, &xcr)
+ || !(xcr & XFEATURE_MASK_YMM)) {
+ rc = emulate_ud(ctxt);
+ goto done;
+ }
+ } else if (ctxt->d & Sse) {
+ if (!(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR)) {
+ rc = emulate_ud(ctxt);
+ goto done;
+ }
+ }
+
+ if ((ctxt->d & (Avx|Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
rc = emulate_nm(ctxt);
goto done;
}
diff --git a/arch/x86/kvm/fpu.h b/arch/x86/kvm/fpu.h
index 3ba12888bf66..f898781b6a06 100644
--- a/arch/x86/kvm/fpu.h
+++ b/arch/x86/kvm/fpu.h
@@ -15,6 +15,58 @@ typedef u32 __attribute__((vector_size(16))) sse128_t;
#define sse128_l3(x) ({ __sse128_u t; t.vec = x; t.as_u32[3]; })
#define sse128(lo, hi) ({ __sse128_u t; t.as_u64[0] = lo; t.as_u64[1] = hi; t.vec; })
+typedef u32 __attribute__((vector_size(32))) avx256_t;
+
+static inline void _kvm_read_avx_reg(int reg, avx256_t *data)
+{
+ switch (reg) {
+ case 0: asm("vmovdqa %%ymm0, %0" : "=m"(*data)); break;
+ case 1: asm("vmovdqa %%ymm1, %0" : "=m"(*data)); break;
+ case 2: asm("vmovdqa %%ymm2, %0" : "=m"(*data)); break;
+ case 3: asm("vmovdqa %%ymm3, %0" : "=m"(*data)); break;
+ case 4: asm("vmovdqa %%ymm4, %0" : "=m"(*data)); break;
+ case 5: asm("vmovdqa %%ymm5, %0" : "=m"(*data)); break;
+ case 6: asm("vmovdqa %%ymm6, %0" : "=m"(*data)); break;
+ case 7: asm("vmovdqa %%ymm7, %0" : "=m"(*data)); break;
+#ifdef CONFIG_X86_64
+ case 8: asm("vmovdqa %%ymm8, %0" : "=m"(*data)); break;
+ case 9: asm("vmovdqa %%ymm9, %0" : "=m"(*data)); break;
+ case 10: asm("vmovdqa %%ymm10, %0" : "=m"(*data)); break;
+ case 11: asm("vmovdqa %%ymm11, %0" : "=m"(*data)); break;
+ case 12: asm("vmovdqa %%ymm12, %0" : "=m"(*data)); break;
+ case 13: asm("vmovdqa %%ymm13, %0" : "=m"(*data)); break;
+ case 14: asm("vmovdqa %%ymm14, %0" : "=m"(*data)); break;
+ case 15: asm("vmovdqa %%ymm15, %0" : "=m"(*data)); break;
+#endif
+ default: BUG();
+ }
+}
+
+static inline void _kvm_write_avx_reg(int reg, const avx256_t *data)
+{
+ switch (reg) {
+ case 0: asm("vmovdqa %0, %%ymm0" : : "m"(*data)); break;
+ case 1: asm("vmovdqa %0, %%ymm1" : : "m"(*data)); break;
+ case 2: asm("vmovdqa %0, %%ymm2" : : "m"(*data)); break;
+ case 3: asm("vmovdqa %0, %%ymm3" : : "m"(*data)); break;
+ case 4: asm("vmovdqa %0, %%ymm4" : : "m"(*data)); break;
+ case 5: asm("vmovdqa %0, %%ymm5" : : "m"(*data)); break;
+ case 6: asm("vmovdqa %0, %%ymm6" : : "m"(*data)); break;
+ case 7: asm("vmovdqa %0, %%ymm7" : : "m"(*data)); break;
+#ifdef CONFIG_X86_64
+ case 8: asm("vmovdqa %0, %%ymm8" : : "m"(*data)); break;
+ case 9: asm("vmovdqa %0, %%ymm9" : : "m"(*data)); break;
+ case 10: asm("vmovdqa %0, %%ymm10" : : "m"(*data)); break;
+ case 11: asm("vmovdqa %0, %%ymm11" : : "m"(*data)); break;
+ case 12: asm("vmovdqa %0, %%ymm12" : : "m"(*data)); break;
+ case 13: asm("vmovdqa %0, %%ymm13" : : "m"(*data)); break;
+ case 14: asm("vmovdqa %0, %%ymm14" : : "m"(*data)); break;
+ case 15: asm("vmovdqa %0, %%ymm15" : : "m"(*data)); break;
+#endif
+ default: BUG();
+ }
+}
+
static inline void _kvm_read_sse_reg(int reg, sse128_t *data)
{
switch (reg) {
@@ -109,6 +161,20 @@ static inline void kvm_fpu_put(void)
fpregs_unlock();
}
+static inline void kvm_read_avx_reg(int reg, avx256_t *data)
+{
+ kvm_fpu_get();
+ _kvm_read_avx_reg(reg, data);
+ kvm_fpu_put();
+}
+
+static inline void kvm_write_avx_reg(int reg, const avx256_t *data)
+{
+ kvm_fpu_get();
+ _kvm_write_avx_reg(reg, data);
+ kvm_fpu_put();
+}
+
static inline void kvm_read_sse_reg(int reg, sse128_t *data)
{
kvm_fpu_get();
diff --git a/arch/x86/kvm/hyperv.c b/arch/x86/kvm/hyperv.c
index 38595ecb990d..de92292eb1f5 100644
--- a/arch/x86/kvm/hyperv.c
+++ b/arch/x86/kvm/hyperv.c
@@ -1568,7 +1568,7 @@ static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
* only, there can be valuable data in the rest which needs
* to be preserved e.g. on migration.
*/
- if (__put_user(0, (u32 __user *)addr))
+ if (put_user(0, (u32 __user *)addr))
return 1;
hv_vcpu->hv_vapic = data;
kvm_vcpu_mark_page_dirty(vcpu, gfn);
diff --git a/arch/x86/kvm/kvm_emulate.h b/arch/x86/kvm/kvm_emulate.h
index 7b5ddb787a25..fb3dab4b5a53 100644
--- a/arch/x86/kvm/kvm_emulate.h
+++ b/arch/x86/kvm/kvm_emulate.h
@@ -237,6 +237,7 @@ struct x86_emulate_ops {
bool (*is_smm)(struct x86_emulate_ctxt *ctxt);
int (*leave_smm)(struct x86_emulate_ctxt *ctxt);
void (*triple_fault)(struct x86_emulate_ctxt *ctxt);
+ int (*get_xcr)(struct x86_emulate_ctxt *ctxt, u32 index, u64 *xcr);
int (*set_xcr)(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr);
gva_t (*get_untagged_addr)(struct x86_emulate_ctxt *ctxt, gva_t addr,
@@ -248,7 +249,7 @@ struct x86_emulate_ops {
/* Type, address-of, and value of an instruction's operand. */
struct operand {
- enum { OP_REG, OP_MEM, OP_MEM_STR, OP_IMM, OP_XMM, OP_MM, OP_NONE } type;
+ enum { OP_REG, OP_MEM, OP_MEM_STR, OP_IMM, OP_XMM, OP_YMM, OP_MM, OP_NONE } type;
unsigned int bytes;
unsigned int count;
union {
@@ -267,11 +268,12 @@ struct operand {
union {
unsigned long val;
u64 val64;
- char valptr[sizeof(sse128_t)];
+ char valptr[sizeof(avx256_t)];
sse128_t vec_val;
+ avx256_t vec_val2;
u64 mm_val;
void *data;
- };
+ } __aligned(32);
};
#define X86_MAX_INSTRUCTION_LENGTH 15
@@ -317,6 +319,14 @@ typedef void (*fastop_t)(struct fastop *);
#define NR_EMULATOR_GPRS 8
#endif
+/*
+ * Distinguish between no prefix, REX, or in the future REX2.
+ */
+enum rex_type {
+ REX_NONE,
+ REX_PREFIX,
+};
+
struct x86_emulate_ctxt {
void *vcpu;
const struct x86_emulate_ops *ops;
@@ -348,6 +358,7 @@ struct x86_emulate_ctxt {
u8 opcode_len;
u8 b;
u8 intercept;
+ bool op_prefix;
u8 op_bytes;
u8 ad_bytes;
union {
@@ -357,7 +368,8 @@ struct x86_emulate_ctxt {
int (*check_perm)(struct x86_emulate_ctxt *ctxt);
bool rip_relative;
- u8 rex_prefix;
+ enum rex_type rex_prefix;
+ u8 rex_bits;
u8 lock_prefix;
u8 rep_prefix;
/* bitmaps of registers in _regs[] that can be read */
diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c
index 0ae7f913d782..1597dd0b0cc6 100644
--- a/arch/x86/kvm/lapic.c
+++ b/arch/x86/kvm/lapic.c
@@ -2126,23 +2126,41 @@ static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
static void advance_periodic_target_expiration(struct kvm_lapic *apic)
{
+ struct kvm_timer *ktimer = &apic->lapic_timer;
ktime_t now = ktime_get();
u64 tscl = rdtsc();
ktime_t delta;
/*
- * Synchronize both deadlines to the same time source or
- * differences in the periods (caused by differences in the
- * underlying clocks or numerical approximation errors) will
- * cause the two to drift apart over time as the errors
- * accumulate.
+ * Use kernel time as the time source for both the hrtimer deadline and
+ * TSC-based deadline so that they stay synchronized. Computing each
+ * deadline independently will cause the two deadlines to drift apart
+ * over time as differences in the periods accumulate, e.g. due to
+ * differences in the underlying clocks or numerical approximation errors.
*/
- apic->lapic_timer.target_expiration =
- ktime_add_ns(apic->lapic_timer.target_expiration,
- apic->lapic_timer.period);
- delta = ktime_sub(apic->lapic_timer.target_expiration, now);
- apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
- nsec_to_cycles(apic->vcpu, delta);
+ ktimer->target_expiration = ktime_add_ns(ktimer->target_expiration,
+ ktimer->period);
+
+ /*
+ * If the new expiration is in the past, e.g. because userspace stopped
+ * running the VM for an extended duration, then force the expiration
+ * to "now" and don't try to play catch-up with the missed events. KVM
+ * will only deliver a single interrupt regardless of how many events
+ * are pending, i.e. restarting the timer with an expiration in the
+ * past will do nothing more than waste host cycles, and can even lead
+ * to a hard lockup in extreme cases.
+ */
+ if (ktime_before(ktimer->target_expiration, now))
+ ktimer->target_expiration = now;
+
+ /*
+ * Note, ensuring the expiration isn't in the past also prevents delta
+ * from going negative, which could cause the TSC deadline to become
+ * excessively large due to it an unsigned value.
+ */
+ delta = ktime_sub(ktimer->target_expiration, now);
+ ktimer->tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
+ nsec_to_cycles(apic->vcpu, delta);
}
static void start_sw_period(struct kvm_lapic *apic)
@@ -2970,9 +2988,9 @@ static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
apic_timer_expired(apic, true);
- if (lapic_is_periodic(apic)) {
+ if (lapic_is_periodic(apic) && !WARN_ON_ONCE(!apic->lapic_timer.period)) {
advance_periodic_target_expiration(apic);
- hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
+ hrtimer_set_expires(&ktimer->timer, ktimer->target_expiration);
return HRTIMER_RESTART;
} else
return HRTIMER_NORESTART;
diff --git a/arch/x86/kvm/mmu.h b/arch/x86/kvm/mmu.h
index f63074048ec6..c272ef269b96 100644
--- a/arch/x86/kvm/mmu.h
+++ b/arch/x86/kvm/mmu.h
@@ -235,8 +235,6 @@ static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
return -(u32)fault & errcode;
}
-bool kvm_mmu_may_ignore_guest_pat(struct kvm *kvm);
-
int kvm_mmu_post_init_vm(struct kvm *kvm);
void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 667d66cf76d5..a81637a98019 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -4859,7 +4859,7 @@ int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
*/
BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK));
- vcpu->arch.l1tf_flush_l1d = true;
+ kvm_request_l1tf_flush_l1d();
if (!flags) {
trace_kvm_page_fault(vcpu, fault_address, error_code);
diff --git a/arch/x86/kvm/mmu/paging_tmpl.h b/arch/x86/kvm/mmu/paging_tmpl.h
index ed762bb4b007..901cd2bd40b8 100644
--- a/arch/x86/kvm/mmu/paging_tmpl.h
+++ b/arch/x86/kvm/mmu/paging_tmpl.h
@@ -402,7 +402,7 @@ retry_walk:
goto error;
ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
- if (unlikely(__get_user(pte, ptep_user)))
+ if (unlikely(get_user(pte, ptep_user)))
goto error;
walker->ptep_user[walker->level - 1] = ptep_user;
diff --git a/arch/x86/kvm/mmu/spte.c b/arch/x86/kvm/mmu/spte.c
index 37647afde7d3..85a0473809b0 100644
--- a/arch/x86/kvm/mmu/spte.c
+++ b/arch/x86/kvm/mmu/spte.c
@@ -292,7 +292,7 @@ bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
}
- if (static_branch_unlikely(&cpu_buf_vm_clear) &&
+ if (cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF_VM_MMIO) &&
!kvm_vcpu_can_access_host_mmio(vcpu) &&
kvm_is_mmio_pfn(pfn, &is_host_mmio))
kvm_track_host_mmio_mapping(vcpu);
diff --git a/arch/x86/kvm/svm/svm.c b/arch/x86/kvm/svm/svm.c
index 9d29b2e7e855..6ddeeb0b1604 100644
--- a/arch/x86/kvm/svm/svm.c
+++ b/arch/x86/kvm/svm/svm.c
@@ -3442,13 +3442,8 @@ static bool svm_check_exit_valid(u64 exit_code)
static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
{
- vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
dump_vmcb(vcpu);
- vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
- vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
- vcpu->run->internal.ndata = 2;
- vcpu->run->internal.data[0] = exit_code;
- vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
+ kvm_prepare_unexpected_reason_exit(vcpu, exit_code);
return 0;
}
@@ -4251,7 +4246,6 @@ static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
clgi();
- kvm_load_guest_xsave_state(vcpu);
/*
* Hardware only context switches DEBUGCTL if LBR virtualization is
@@ -4294,7 +4288,6 @@ static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
update_debugctlmsr(vcpu->arch.host_debugctl);
- kvm_load_host_xsave_state(vcpu);
stgi();
/* Any pending NMI will happen here */
@@ -4326,14 +4319,6 @@ static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
- /*
- * We need to handle MC intercepts here before the vcpu has a chance to
- * change the physical cpu
- */
- if (unlikely(svm->vmcb->control.exit_code ==
- SVM_EXIT_EXCP_BASE + MC_VECTOR))
- svm_handle_mce(vcpu);
-
trace_kvm_exit(vcpu, KVM_ISA_SVM);
svm_complete_interrupts(vcpu);
@@ -4622,8 +4607,16 @@ out:
static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
{
- if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
+ switch (to_svm(vcpu)->vmcb->control.exit_code) {
+ case SVM_EXIT_EXCP_BASE + MC_VECTOR:
+ svm_handle_mce(vcpu);
+ break;
+ case SVM_EXIT_INTR:
vcpu->arch.at_instruction_boundary = true;
+ break;
+ default:
+ break;
+ }
}
static void svm_setup_mce(struct kvm_vcpu *vcpu)
diff --git a/arch/x86/kvm/svm/vmenter.S b/arch/x86/kvm/svm/vmenter.S
index 235c4af6b692..da5f481cb17e 100644
--- a/arch/x86/kvm/svm/vmenter.S
+++ b/arch/x86/kvm/svm/vmenter.S
@@ -92,6 +92,8 @@
jmp 901b
.endm
+#define SVM_CLEAR_CPU_BUFFERS \
+ ALTERNATIVE "", __CLEAR_CPU_BUFFERS, X86_FEATURE_CLEAR_CPU_BUF_VM
/**
* __svm_vcpu_run - Run a vCPU via a transition to SVM guest mode
@@ -170,7 +172,7 @@ SYM_FUNC_START(__svm_vcpu_run)
mov VCPU_RDI(%_ASM_DI), %_ASM_DI
/* Clobbers EFLAGS.ZF */
- VM_CLEAR_CPU_BUFFERS
+ SVM_CLEAR_CPU_BUFFERS
/* Enter guest mode */
3: vmrun %_ASM_AX
@@ -339,7 +341,7 @@ SYM_FUNC_START(__svm_sev_es_vcpu_run)
mov KVM_VMCB_pa(%rax), %rax
/* Clobbers EFLAGS.ZF */
- VM_CLEAR_CPU_BUFFERS
+ SVM_CLEAR_CPU_BUFFERS
/* Enter guest mode */
1: vmrun %rax
diff --git a/arch/x86/kvm/vmx/nested.c b/arch/x86/kvm/vmx/nested.c
index bcea087b642f..976d0706c920 100644
--- a/arch/x86/kvm/vmx/nested.c
+++ b/arch/x86/kvm/vmx/nested.c
@@ -3880,7 +3880,7 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
goto vmentry_failed;
/* Hide L1D cache contents from the nested guest. */
- vmx->vcpu.arch.l1tf_flush_l1d = true;
+ kvm_request_l1tf_flush_l1d();
/*
* Must happen outside of nested_vmx_enter_non_root_mode() as it will
diff --git a/arch/x86/kvm/vmx/run_flags.h b/arch/x86/kvm/vmx/run_flags.h
index 2f20fb170def..6a87a12135fb 100644
--- a/arch/x86/kvm/vmx/run_flags.h
+++ b/arch/x86/kvm/vmx/run_flags.h
@@ -2,12 +2,8 @@
#ifndef __KVM_X86_VMX_RUN_FLAGS_H
#define __KVM_X86_VMX_RUN_FLAGS_H
-#define VMX_RUN_VMRESUME_SHIFT 0
-#define VMX_RUN_SAVE_SPEC_CTRL_SHIFT 1
-#define VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO_SHIFT 2
-
-#define VMX_RUN_VMRESUME BIT(VMX_RUN_VMRESUME_SHIFT)
-#define VMX_RUN_SAVE_SPEC_CTRL BIT(VMX_RUN_SAVE_SPEC_CTRL_SHIFT)
-#define VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO BIT(VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO_SHIFT)
+#define VMX_RUN_VMRESUME BIT(0)
+#define VMX_RUN_SAVE_SPEC_CTRL BIT(1)
+#define VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO BIT(2)
#endif /* __KVM_X86_VMX_RUN_FLAGS_H */
diff --git a/arch/x86/kvm/vmx/tdx.c b/arch/x86/kvm/vmx/tdx.c
index 0a49c863c811..6d41d2fc8043 100644
--- a/arch/x86/kvm/vmx/tdx.c
+++ b/arch/x86/kvm/vmx/tdx.c
@@ -763,25 +763,6 @@ static bool tdx_protected_apic_has_interrupt(struct kvm_vcpu *vcpu)
return tdx_vcpu_state_details_intr_pending(vcpu_state_details);
}
-/*
- * Compared to vmx_prepare_switch_to_guest(), there is not much to do
- * as SEAMCALL/SEAMRET calls take care of most of save and restore.
- */
-void tdx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vt *vt = to_vt(vcpu);
-
- if (vt->guest_state_loaded)
- return;
-
- if (likely(is_64bit_mm(current->mm)))
- vt->msr_host_kernel_gs_base = current->thread.gsbase;
- else
- vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
-
- vt->guest_state_loaded = true;
-}
-
struct tdx_uret_msr {
u32 msr;
unsigned int slot;
@@ -795,19 +776,38 @@ static struct tdx_uret_msr tdx_uret_msrs[] = {
{.msr = MSR_TSC_AUX,},
};
-static void tdx_user_return_msr_update_cache(void)
+void tdx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
{
+ struct vcpu_vt *vt = to_vt(vcpu);
int i;
+ if (vt->guest_state_loaded)
+ return;
+
+ if (likely(is_64bit_mm(current->mm)))
+ vt->msr_host_kernel_gs_base = current->thread.gsbase;
+ else
+ vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
+
+ vt->guest_state_loaded = true;
+
+ /*
+ * Explicitly set user-return MSRs that are clobbered by the TDX-Module
+ * if VP.ENTER succeeds, i.e. on TD-Exit, with the values that would be
+ * written by the TDX-Module. Don't rely on the TDX-Module to actually
+ * clobber the MSRs, as the contract is poorly defined and not upheld.
+ * E.g. the TDX-Module will synthesize an EPT Violation without doing
+ * VM-Enter if it suspects a zero-step attack, and never "restore" VMM
+ * state.
+ */
for (i = 0; i < ARRAY_SIZE(tdx_uret_msrs); i++)
- kvm_user_return_msr_update_cache(tdx_uret_msrs[i].slot,
- tdx_uret_msrs[i].defval);
+ kvm_set_user_return_msr(tdx_uret_msrs[i].slot,
+ tdx_uret_msrs[i].defval, -1ull);
}
static void tdx_prepare_switch_to_host(struct kvm_vcpu *vcpu)
{
struct vcpu_vt *vt = to_vt(vcpu);
- struct vcpu_tdx *tdx = to_tdx(vcpu);
if (!vt->guest_state_loaded)
return;
@@ -815,11 +815,6 @@ static void tdx_prepare_switch_to_host(struct kvm_vcpu *vcpu)
++vcpu->stat.host_state_reload;
wrmsrl(MSR_KERNEL_GS_BASE, vt->msr_host_kernel_gs_base);
- if (tdx->guest_entered) {
- tdx_user_return_msr_update_cache();
- tdx->guest_entered = false;
- }
-
vt->guest_state_loaded = false;
}
@@ -1059,7 +1054,6 @@ fastpath_t tdx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
update_debugctlmsr(vcpu->arch.host_debugctl);
tdx_load_host_xsave_state(vcpu);
- tdx->guest_entered = true;
vcpu->arch.regs_avail &= TDX_REGS_AVAIL_SET;
@@ -1069,9 +1063,6 @@ fastpath_t tdx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
if (unlikely((tdx->vp_enter_ret & TDX_SW_ERROR) == TDX_SW_ERROR))
return EXIT_FASTPATH_NONE;
- if (unlikely(vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
- kvm_machine_check();
-
trace_kvm_exit(vcpu, KVM_ISA_VMX);
if (unlikely(tdx_failed_vmentry(vcpu)))
@@ -2145,11 +2136,7 @@ int tdx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t fastpath)
}
unhandled_exit:
- vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
- vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
- vcpu->run->internal.ndata = 2;
- vcpu->run->internal.data[0] = vp_enter_ret;
- vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
+ kvm_prepare_unexpected_reason_exit(vcpu, vp_enter_ret);
return 0;
}
@@ -3447,10 +3434,6 @@ static int __init __tdx_bringup(void)
/*
* Check if MSRs (tdx_uret_msrs) can be saved/restored
* before returning to user space.
- *
- * this_cpu_ptr(user_return_msrs)->registered isn't checked
- * because the registration is done at vcpu runtime by
- * tdx_user_return_msr_update_cache().
*/
tdx_uret_msrs[i].slot = kvm_find_user_return_msr(tdx_uret_msrs[i].msr);
if (tdx_uret_msrs[i].slot == -1) {
diff --git a/arch/x86/kvm/vmx/tdx.h b/arch/x86/kvm/vmx/tdx.h
index ca39a9391db1..7f258870dc41 100644
--- a/arch/x86/kvm/vmx/tdx.h
+++ b/arch/x86/kvm/vmx/tdx.h
@@ -67,7 +67,6 @@ struct vcpu_tdx {
u64 vp_enter_ret;
enum vcpu_tdx_state state;
- bool guest_entered;
u64 map_gpa_next;
u64 map_gpa_end;
diff --git a/arch/x86/kvm/vmx/vmenter.S b/arch/x86/kvm/vmx/vmenter.S
index bc255d709d8a..909be7bbe5bc 100644
--- a/arch/x86/kvm/vmx/vmenter.S
+++ b/arch/x86/kvm/vmx/vmenter.S
@@ -71,6 +71,7 @@
* @regs: unsigned long * (to guest registers)
* @flags: VMX_RUN_VMRESUME: use VMRESUME instead of VMLAUNCH
* VMX_RUN_SAVE_SPEC_CTRL: save guest SPEC_CTRL into vmx->spec_ctrl
+ * VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO: vCPU can access host MMIO
*
* Returns:
* 0 on VM-Exit, 1 on VM-Fail
@@ -92,7 +93,7 @@ SYM_FUNC_START(__vmx_vcpu_run)
/* Save @vmx for SPEC_CTRL handling */
push %_ASM_ARG1
- /* Save @flags for SPEC_CTRL handling */
+ /* Save @flags (used for VMLAUNCH vs. VMRESUME and mitigations). */
push %_ASM_ARG3
/*
@@ -101,9 +102,6 @@ SYM_FUNC_START(__vmx_vcpu_run)
*/
push %_ASM_ARG2
- /* Copy @flags to EBX, _ASM_ARG3 is volatile. */
- mov %_ASM_ARG3L, %ebx
-
lea (%_ASM_SP), %_ASM_ARG2
call vmx_update_host_rsp
@@ -137,9 +135,6 @@ SYM_FUNC_START(__vmx_vcpu_run)
/* Load @regs to RAX. */
mov (%_ASM_SP), %_ASM_AX
- /* Check if vmlaunch or vmresume is needed */
- bt $VMX_RUN_VMRESUME_SHIFT, %ebx
-
/* Load guest registers. Don't clobber flags. */
mov VCPU_RCX(%_ASM_AX), %_ASM_CX
mov VCPU_RDX(%_ASM_AX), %_ASM_DX
@@ -160,11 +155,23 @@ SYM_FUNC_START(__vmx_vcpu_run)
/* Load guest RAX. This kills the @regs pointer! */
mov VCPU_RAX(%_ASM_AX), %_ASM_AX
- /* Clobbers EFLAGS.ZF */
- CLEAR_CPU_BUFFERS
-
- /* Check EFLAGS.CF from the VMX_RUN_VMRESUME bit test above. */
- jnc .Lvmlaunch
+ /*
+ * Note, ALTERNATIVE_2 works in reverse order. If CLEAR_CPU_BUF_VM is
+ * enabled, do VERW unconditionally. If CPU_BUF_VM_MMIO is enabled,
+ * check @flags to see if the vCPU has access to host MMIO, and if so,
+ * do VERW. Else, do nothing (no mitigations needed/enabled).
+ */
+ ALTERNATIVE_2 "", \
+ __stringify(testl $VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO, WORD_SIZE(%_ASM_SP); \
+ jz .Lskip_mmio_verw; \
+ VERW; \
+ .Lskip_mmio_verw:), \
+ X86_FEATURE_CLEAR_CPU_BUF_VM_MMIO, \
+ __stringify(VERW), X86_FEATURE_CLEAR_CPU_BUF_VM
+
+ /* Check @flags to see if VMLAUNCH or VMRESUME is needed. */
+ testl $VMX_RUN_VMRESUME, WORD_SIZE(%_ASM_SP)
+ jz .Lvmlaunch
/*
* After a successful VMRESUME/VMLAUNCH, control flow "magically"
diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c
index 91b6f2f3edc2..2d98b7111746 100644
--- a/arch/x86/kvm/vmx/vmx.c
+++ b/arch/x86/kvm/vmx/vmx.c
@@ -203,6 +203,7 @@ module_param(pt_mode, int, S_IRUGO);
struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
+#ifdef CONFIG_CPU_MITIGATIONS
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
static DEFINE_MUTEX(vmx_l1d_flush_mutex);
@@ -225,7 +226,7 @@ static const struct {
#define L1D_CACHE_ORDER 4
static void *vmx_l1d_flush_pages;
-static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
+static int __vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
{
struct page *page;
unsigned int i;
@@ -302,6 +303,26 @@ static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
return 0;
}
+static int vmx_setup_l1d_flush(void)
+{
+ /*
+ * Hand the parameter mitigation value in which was stored in the pre
+ * module init parser. If no parameter was given, it will contain
+ * 'auto' which will be turned into the default 'cond' mitigation mode.
+ */
+ return __vmx_setup_l1d_flush(vmentry_l1d_flush_param);
+}
+
+static void vmx_cleanup_l1d_flush(void)
+{
+ if (vmx_l1d_flush_pages) {
+ free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
+ vmx_l1d_flush_pages = NULL;
+ }
+ /* Restore state so sysfs ignores VMX */
+ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
+}
+
static int vmentry_l1d_flush_parse(const char *s)
{
unsigned int i;
@@ -339,7 +360,7 @@ static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
}
mutex_lock(&vmx_l1d_flush_mutex);
- ret = vmx_setup_l1d_flush(l1tf);
+ ret = __vmx_setup_l1d_flush(l1tf);
mutex_unlock(&vmx_l1d_flush_mutex);
return ret;
}
@@ -352,6 +373,101 @@ static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
}
+/*
+ * Software based L1D cache flush which is used when microcode providing
+ * the cache control MSR is not loaded.
+ *
+ * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
+ * flush it is required to read in 64 KiB because the replacement algorithm
+ * is not exactly LRU. This could be sized at runtime via topology
+ * information but as all relevant affected CPUs have 32KiB L1D cache size
+ * there is no point in doing so.
+ */
+static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
+{
+ int size = PAGE_SIZE << L1D_CACHE_ORDER;
+
+ if (!static_branch_unlikely(&vmx_l1d_should_flush))
+ return;
+
+ /*
+ * This code is only executed when the flush mode is 'cond' or
+ * 'always'
+ */
+ if (static_branch_likely(&vmx_l1d_flush_cond)) {
+ /*
+ * Clear the per-cpu flush bit, it gets set again if the vCPU
+ * is reloaded, i.e. if the vCPU is scheduled out or if KVM
+ * exits to userspace, or if KVM reaches one of the unsafe
+ * VMEXIT handlers, e.g. if KVM calls into the emulator,
+ * or from the interrupt handlers.
+ */
+ if (!kvm_get_cpu_l1tf_flush_l1d())
+ return;
+ kvm_clear_cpu_l1tf_flush_l1d();
+ }
+
+ vcpu->stat.l1d_flush++;
+
+ if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
+ native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
+ return;
+ }
+
+ asm volatile(
+ /* First ensure the pages are in the TLB */
+ "xorl %%eax, %%eax\n"
+ ".Lpopulate_tlb:\n\t"
+ "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
+ "addl $4096, %%eax\n\t"
+ "cmpl %%eax, %[size]\n\t"
+ "jne .Lpopulate_tlb\n\t"
+ "xorl %%eax, %%eax\n\t"
+ "cpuid\n\t"
+ /* Now fill the cache */
+ "xorl %%eax, %%eax\n"
+ ".Lfill_cache:\n"
+ "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
+ "addl $64, %%eax\n\t"
+ "cmpl %%eax, %[size]\n\t"
+ "jne .Lfill_cache\n\t"
+ "lfence\n"
+ :: [flush_pages] "r" (vmx_l1d_flush_pages),
+ [size] "r" (size)
+ : "eax", "ebx", "ecx", "edx");
+}
+
+#else /* CONFIG_CPU_MITIGATIONS*/
+static int vmx_setup_l1d_flush(void)
+{
+ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NEVER;
+ return 0;
+}
+static void vmx_cleanup_l1d_flush(void)
+{
+ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
+}
+static __always_inline void vmx_l1d_flush(struct kvm_vcpu *vcpu)
+{
+
+}
+static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
+{
+ pr_warn_once("Kernel compiled without mitigations, ignoring vmentry_l1d_flush\n");
+ return 0;
+}
+static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
+{
+ return sysfs_emit(s, "never\n");
+}
+#endif
+
+static const struct kernel_param_ops vmentry_l1d_flush_ops = {
+ .set = vmentry_l1d_flush_set,
+ .get = vmentry_l1d_flush_get,
+};
+module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
+
static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
{
u64 msr;
@@ -404,12 +520,6 @@ static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
vmx->disable_fb_clear = false;
}
-static const struct kernel_param_ops vmentry_l1d_flush_ops = {
- .set = vmentry_l1d_flush_set,
- .get = vmentry_l1d_flush_get,
-};
-module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
-
static u32 vmx_segment_access_rights(struct kvm_segment *var);
void vmx_vmexit(void);
@@ -903,7 +1013,7 @@ unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
flags |= VMX_RUN_SAVE_SPEC_CTRL;
- if (static_branch_unlikely(&cpu_buf_vm_clear) &&
+ if (cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF_VM_MMIO) &&
kvm_vcpu_can_access_host_mmio(&vmx->vcpu))
flags |= VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO;
@@ -6631,15 +6741,8 @@ static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
unexpected_vmexit:
- vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
- exit_reason.full);
dump_vmcs(vcpu);
- vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
- vcpu->run->internal.suberror =
- KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
- vcpu->run->internal.ndata = 2;
- vcpu->run->internal.data[0] = exit_reason.full;
- vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
+ kvm_prepare_unexpected_reason_exit(vcpu, exit_reason.full);
return 0;
}
@@ -6661,77 +6764,6 @@ int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
return ret;
}
-/*
- * Software based L1D cache flush which is used when microcode providing
- * the cache control MSR is not loaded.
- *
- * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
- * flush it is required to read in 64 KiB because the replacement algorithm
- * is not exactly LRU. This could be sized at runtime via topology
- * information but as all relevant affected CPUs have 32KiB L1D cache size
- * there is no point in doing so.
- */
-static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
-{
- int size = PAGE_SIZE << L1D_CACHE_ORDER;
-
- /*
- * This code is only executed when the flush mode is 'cond' or
- * 'always'
- */
- if (static_branch_likely(&vmx_l1d_flush_cond)) {
- bool flush_l1d;
-
- /*
- * Clear the per-vcpu flush bit, it gets set again if the vCPU
- * is reloaded, i.e. if the vCPU is scheduled out or if KVM
- * exits to userspace, or if KVM reaches one of the unsafe
- * VMEXIT handlers, e.g. if KVM calls into the emulator.
- */
- flush_l1d = vcpu->arch.l1tf_flush_l1d;
- vcpu->arch.l1tf_flush_l1d = false;
-
- /*
- * Clear the per-cpu flush bit, it gets set again from
- * the interrupt handlers.
- */
- flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
- kvm_clear_cpu_l1tf_flush_l1d();
-
- if (!flush_l1d)
- return;
- }
-
- vcpu->stat.l1d_flush++;
-
- if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
- native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
- return;
- }
-
- asm volatile(
- /* First ensure the pages are in the TLB */
- "xorl %%eax, %%eax\n"
- ".Lpopulate_tlb:\n\t"
- "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
- "addl $4096, %%eax\n\t"
- "cmpl %%eax, %[size]\n\t"
- "jne .Lpopulate_tlb\n\t"
- "xorl %%eax, %%eax\n\t"
- "cpuid\n\t"
- /* Now fill the cache */
- "xorl %%eax, %%eax\n"
- ".Lfill_cache:\n"
- "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
- "addl $64, %%eax\n\t"
- "cmpl %%eax, %[size]\n\t"
- "jne .Lfill_cache\n\t"
- "lfence\n"
- :: [flush_pages] "r" (vmx_l1d_flush_pages),
- [size] "r" (size)
- : "eax", "ebx", "ecx", "edx");
-}
-
void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
@@ -7050,10 +7082,19 @@ void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
if (to_vt(vcpu)->emulation_required)
return;
- if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXTERNAL_INTERRUPT)
+ switch (vmx_get_exit_reason(vcpu).basic) {
+ case EXIT_REASON_EXTERNAL_INTERRUPT:
handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
- else if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXCEPTION_NMI)
+ break;
+ case EXIT_REASON_EXCEPTION_NMI:
handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
+ break;
+ case EXIT_REASON_MCE_DURING_VMENTRY:
+ kvm_machine_check();
+ break;
+ default:
+ break;
+ }
}
/*
@@ -7328,21 +7369,7 @@ static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
guest_state_enter_irqoff();
- /*
- * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
- * mitigation for MDS is done late in VMentry and is still
- * executed in spite of L1D Flush. This is because an extra VERW
- * should not matter much after the big hammer L1D Flush.
- *
- * cpu_buf_vm_clear is used when system is not vulnerable to MDS/TAA,
- * and is affected by MMIO Stale Data. In such cases mitigation in only
- * needed against an MMIO capable guest.
- */
- if (static_branch_unlikely(&vmx_l1d_should_flush))
- vmx_l1d_flush(vcpu);
- else if (static_branch_unlikely(&cpu_buf_vm_clear) &&
- (flags & VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO))
- x86_clear_cpu_buffers();
+ vmx_l1d_flush(vcpu);
vmx_disable_fb_clear(vmx);
@@ -7454,8 +7481,6 @@ fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
vmx_set_interrupt_shadow(vcpu, 0);
- kvm_load_guest_xsave_state(vcpu);
-
pt_guest_enter(vmx);
atomic_switch_perf_msrs(vmx);
@@ -7499,8 +7524,6 @@ fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
pt_guest_exit(vmx);
- kvm_load_host_xsave_state(vcpu);
-
if (is_guest_mode(vcpu)) {
/*
* Track VMLAUNCH/VMRESUME that have made past guest state
@@ -7516,9 +7539,6 @@ fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
if (unlikely(vmx->fail))
return EXIT_FASTPATH_NONE;
- if (unlikely((u16)vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
- kvm_machine_check();
-
trace_kvm_exit(vcpu, KVM_ISA_VMX);
if (unlikely(vmx_get_exit_reason(vcpu).failed_vmentry))
@@ -8679,16 +8699,6 @@ __init int vmx_hardware_setup(void)
return r;
}
-static void vmx_cleanup_l1d_flush(void)
-{
- if (vmx_l1d_flush_pages) {
- free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
- vmx_l1d_flush_pages = NULL;
- }
- /* Restore state so sysfs ignores VMX */
- l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
-}
-
void vmx_exit(void)
{
allow_smaller_maxphyaddr = false;
@@ -8724,14 +8734,8 @@ int __init vmx_init(void)
if (r)
return r;
- /*
- * Must be called after common x86 init so enable_ept is properly set
- * up. Hand the parameter mitigation value in which was stored in
- * the pre module init parser. If no parameter was given, it will
- * contain 'auto' which will be turned into the default 'cond'
- * mitigation mode.
- */
- r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
+ /* Must be called after common x86 init so enable_ept is setup. */
+ r = vmx_setup_l1d_flush();
if (r)
goto err_l1d_flush;
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
index c9c2aa6f4705..cd55feb4a378 100644
--- a/arch/x86/kvm/x86.c
+++ b/arch/x86/kvm/x86.c
@@ -159,9 +159,6 @@ EXPORT_SYMBOL_FOR_KVM_INTERNAL(report_ignored_msrs);
unsigned int min_timer_period_us = 200;
module_param(min_timer_period_us, uint, 0644);
-static bool __read_mostly kvmclock_periodic_sync = true;
-module_param(kvmclock_periodic_sync, bool, 0444);
-
/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
static u32 __read_mostly tsc_tolerance_ppm = 250;
module_param(tsc_tolerance_ppm, uint, 0644);
@@ -212,7 +209,7 @@ struct kvm_user_return_msrs {
u32 __read_mostly kvm_nr_uret_msrs;
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_nr_uret_msrs);
static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
-static struct kvm_user_return_msrs __percpu *user_return_msrs;
+static DEFINE_PER_CPU(struct kvm_user_return_msrs, user_return_msrs);
#define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
@@ -575,24 +572,26 @@ static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
vcpu->arch.apf.gfns[i] = ~0;
}
+static void kvm_destroy_user_return_msrs(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu)
+ WARN_ON_ONCE(per_cpu(user_return_msrs, cpu).registered);
+
+ kvm_nr_uret_msrs = 0;
+}
+
static void kvm_on_user_return(struct user_return_notifier *urn)
{
unsigned slot;
struct kvm_user_return_msrs *msrs
= container_of(urn, struct kvm_user_return_msrs, urn);
struct kvm_user_return_msr_values *values;
- unsigned long flags;
- /*
- * Disabling irqs at this point since the following code could be
- * interrupted and executed through kvm_arch_disable_virtualization_cpu()
- */
- local_irq_save(flags);
- if (msrs->registered) {
- msrs->registered = false;
- user_return_notifier_unregister(urn);
- }
- local_irq_restore(flags);
+ msrs->registered = false;
+ user_return_notifier_unregister(urn);
+
for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
values = &msrs->values[slot];
if (values->host != values->curr) {
@@ -643,7 +642,7 @@ EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_find_user_return_msr);
static void kvm_user_return_msr_cpu_online(void)
{
- struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
+ struct kvm_user_return_msrs *msrs = this_cpu_ptr(&user_return_msrs);
u64 value;
int i;
@@ -665,7 +664,7 @@ static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs)
int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
{
- struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
+ struct kvm_user_return_msrs *msrs = this_cpu_ptr(&user_return_msrs);
int err;
value = (value & mask) | (msrs->values[slot].host & ~mask);
@@ -681,24 +680,15 @@ int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
}
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_user_return_msr);
-void kvm_user_return_msr_update_cache(unsigned int slot, u64 value)
-{
- struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
-
- msrs->values[slot].curr = value;
- kvm_user_return_register_notifier(msrs);
-}
-EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_user_return_msr_update_cache);
-
u64 kvm_get_user_return_msr(unsigned int slot)
{
- return this_cpu_ptr(user_return_msrs)->values[slot].curr;
+ return this_cpu_ptr(&user_return_msrs)->values[slot].curr;
}
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_user_return_msr);
static void drop_user_return_notifiers(void)
{
- struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
+ struct kvm_user_return_msrs *msrs = this_cpu_ptr(&user_return_msrs);
if (msrs->registered)
kvm_on_user_return(&msrs->urn);
@@ -1045,6 +1035,13 @@ bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
}
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_require_dr);
+static bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
+{
+ u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
+
+ return (vcpu->arch.apf.msr_en_val & mask) == mask;
+}
+
static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
{
return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
@@ -1137,15 +1134,20 @@ void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned lon
}
if ((cr0 ^ old_cr0) & X86_CR0_PG) {
- kvm_clear_async_pf_completion_queue(vcpu);
- kvm_async_pf_hash_reset(vcpu);
-
/*
* Clearing CR0.PG is defined to flush the TLB from the guest's
* perspective.
*/
if (!(cr0 & X86_CR0_PG))
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
+ /*
+ * Check for async #PF completion events when enabling paging,
+ * as the vCPU may have previously encountered async #PFs (it's
+ * entirely legal for the guest to toggle paging on/off without
+ * waiting for the async #PF queue to drain).
+ */
+ else if (kvm_pv_async_pf_enabled(vcpu))
+ kvm_make_request(KVM_REQ_APF_READY, vcpu);
}
if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
@@ -1203,20 +1205,27 @@ void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
}
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lmsw);
-void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
+static void kvm_load_xfeatures(struct kvm_vcpu *vcpu, bool load_guest)
{
if (vcpu->arch.guest_state_protected)
return;
- if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
+ if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE))
+ return;
- if (vcpu->arch.xcr0 != kvm_host.xcr0)
- xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
+ if (vcpu->arch.xcr0 != kvm_host.xcr0)
+ xsetbv(XCR_XFEATURE_ENABLED_MASK,
+ load_guest ? vcpu->arch.xcr0 : kvm_host.xcr0);
- if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
- vcpu->arch.ia32_xss != kvm_host.xss)
- wrmsrq(MSR_IA32_XSS, vcpu->arch.ia32_xss);
- }
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
+ vcpu->arch.ia32_xss != kvm_host.xss)
+ wrmsrq(MSR_IA32_XSS, load_guest ? vcpu->arch.ia32_xss : kvm_host.xss);
+}
+
+static void kvm_load_guest_pkru(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.guest_state_protected)
+ return;
if (cpu_feature_enabled(X86_FEATURE_PKU) &&
vcpu->arch.pkru != vcpu->arch.host_pkru &&
@@ -1224,9 +1233,8 @@ void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
wrpkru(vcpu->arch.pkru);
}
-EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_load_guest_xsave_state);
-void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
+static void kvm_load_host_pkru(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.guest_state_protected)
return;
@@ -1238,19 +1246,7 @@ void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
if (vcpu->arch.pkru != vcpu->arch.host_pkru)
wrpkru(vcpu->arch.host_pkru);
}
-
- if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
-
- if (vcpu->arch.xcr0 != kvm_host.xcr0)
- xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
-
- if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
- vcpu->arch.ia32_xss != kvm_host.xss)
- wrmsrq(MSR_IA32_XSS, kvm_host.xss);
- }
-
}
-EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_load_host_xsave_state);
#ifdef CONFIG_X86_64
static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
@@ -3505,27 +3501,17 @@ uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
/*
* kvmclock updates which are isolated to a given vcpu, such as
* vcpu->cpu migration, should not allow system_timestamp from
- * the rest of the vcpus to remain static. Otherwise ntp frequency
- * correction applies to one vcpu's system_timestamp but not
- * the others.
+ * the rest of the vcpus to remain static.
*
* So in those cases, request a kvmclock update for all vcpus.
- * We need to rate-limit these requests though, as they can
- * considerably slow guests that have a large number of vcpus.
- * The time for a remote vcpu to update its kvmclock is bound
- * by the delay we use to rate-limit the updates.
+ * The worst case for a remote vcpu to update its kvmclock
+ * is then bounded by maximum nohz sleep latency.
*/
-
-#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
-
-static void kvmclock_update_fn(struct work_struct *work)
+static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
{
unsigned long i;
- struct delayed_work *dwork = to_delayed_work(work);
- struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
- kvmclock_update_work);
- struct kvm *kvm = container_of(ka, struct kvm, arch);
struct kvm_vcpu *vcpu;
+ struct kvm *kvm = v->kvm;
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
@@ -3533,29 +3519,6 @@ static void kvmclock_update_fn(struct work_struct *work)
}
}
-static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
-{
- struct kvm *kvm = v->kvm;
-
- kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
- schedule_delayed_work(&kvm->arch.kvmclock_update_work,
- KVMCLOCK_UPDATE_DELAY);
-}
-
-#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
-
-static void kvmclock_sync_fn(struct work_struct *work)
-{
- struct delayed_work *dwork = to_delayed_work(work);
- struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
- kvmclock_sync_work);
- struct kvm *kvm = container_of(ka, struct kvm, arch);
-
- schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
- schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
- KVMCLOCK_SYNC_PERIOD);
-}
-
/* These helpers are safe iff @msr is known to be an MCx bank MSR. */
static bool is_mci_control_msr(u32 msr)
{
@@ -3650,13 +3613,6 @@ static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
return 0;
}
-static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
-{
- u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
-
- return (vcpu->arch.apf.msr_en_val & mask) == mask;
-}
-
static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
{
gpa_t gpa = data & ~0x3f;
@@ -4182,7 +4138,12 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
return 1;
if (data & 0x1) {
- vcpu->arch.apf.pageready_pending = false;
+ /*
+ * Pairs with the smp_mb__after_atomic() in
+ * kvm_arch_async_page_present_queued().
+ */
+ smp_store_mb(vcpu->arch.apf.pageready_pending, false);
+
kvm_check_async_pf_completion(vcpu);
}
break;
@@ -5188,7 +5149,7 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
- vcpu->arch.l1tf_flush_l1d = true;
+ kvm_request_l1tf_flush_l1d();
if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
pmu->need_cleanup = true;
@@ -7998,7 +7959,7 @@ int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
unsigned int bytes, struct x86_exception *exception)
{
/* kvm_write_guest_virt_system can pull in tons of pages. */
- vcpu->arch.l1tf_flush_l1d = true;
+ kvm_request_l1tf_flush_l1d();
return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
PFERR_WRITE_MASK, exception);
@@ -8842,6 +8803,14 @@ static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
}
+static int emulator_get_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 *xcr)
+{
+ if (index != XCR_XFEATURE_ENABLED_MASK)
+ return 1;
+ *xcr = emul_to_vcpu(ctxt)->arch.xcr0;
+ return 0;
+}
+
static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
{
return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
@@ -8914,6 +8883,7 @@ static const struct x86_emulate_ops emulate_ops = {
.is_smm = emulator_is_smm,
.leave_smm = emulator_leave_smm,
.triple_fault = emulator_triple_fault,
+ .get_xcr = emulator_get_xcr,
.set_xcr = emulator_set_xcr,
.get_untagged_addr = emulator_get_untagged_addr,
.is_canonical_addr = emulator_is_canonical_addr,
@@ -9109,6 +9079,18 @@ void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
}
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_event_vectoring_exit);
+void kvm_prepare_unexpected_reason_exit(struct kvm_vcpu *vcpu, u64 exit_reason)
+{
+ vcpu_unimpl(vcpu, "unexpected exit reason 0x%llx\n", exit_reason);
+
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
+ vcpu->run->internal.ndata = 2;
+ vcpu->run->internal.data[0] = exit_reason;
+ vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_unexpected_reason_exit);
+
static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
{
struct kvm *kvm = vcpu->kvm;
@@ -9394,7 +9376,7 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
return handle_emulation_failure(vcpu, emulation_type);
}
- vcpu->arch.l1tf_flush_l1d = true;
+ kvm_request_l1tf_flush_l1d();
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
kvm_clear_exception_queue(vcpu);
@@ -10031,17 +10013,9 @@ int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
return -ENOMEM;
}
- user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
- if (!user_return_msrs) {
- pr_err("failed to allocate percpu kvm_user_return_msrs\n");
- r = -ENOMEM;
- goto out_free_x86_emulator_cache;
- }
- kvm_nr_uret_msrs = 0;
-
r = kvm_mmu_vendor_module_init();
if (r)
- goto out_free_percpu;
+ goto out_free_x86_emulator_cache;
kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
@@ -10066,6 +10040,8 @@ int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
+ WARN_ON_ONCE(kvm_nr_uret_msrs);
+
r = ops->hardware_setup();
if (r != 0)
goto out_mmu_exit;
@@ -10138,9 +10114,8 @@ out_unwind_ops:
kvm_x86_ops.enable_virtualization_cpu = NULL;
kvm_x86_call(hardware_unsetup)();
out_mmu_exit:
+ kvm_destroy_user_return_msrs();
kvm_mmu_vendor_module_exit();
-out_free_percpu:
- free_percpu(user_return_msrs);
out_free_x86_emulator_cache:
kmem_cache_destroy(x86_emulator_cache);
return r;
@@ -10168,8 +10143,8 @@ void kvm_x86_vendor_exit(void)
cancel_work_sync(&pvclock_gtod_work);
#endif
kvm_x86_call(hardware_unsetup)();
+ kvm_destroy_user_return_msrs();
kvm_mmu_vendor_module_exit();
- free_percpu(user_return_msrs);
kmem_cache_destroy(x86_emulator_cache);
#ifdef CONFIG_KVM_XEN
static_key_deferred_flush(&kvm_xen_enabled);
@@ -11291,6 +11266,8 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
if (vcpu->arch.guest_fpu.xfd_err)
wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
+ kvm_load_xfeatures(vcpu, true);
+
if (unlikely(vcpu->arch.switch_db_regs &&
!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) {
set_debugreg(DR7_FIXED_1, 7);
@@ -11319,6 +11296,12 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
guest_timing_enter_irqoff();
+ /*
+ * Swap PKRU with hardware breakpoints disabled to minimize the number
+ * of flows where non-KVM code can run with guest state loaded.
+ */
+ kvm_load_guest_pkru(vcpu);
+
for (;;) {
/*
* Assert that vCPU vs. VM APICv state is consistent. An APICv
@@ -11347,6 +11330,8 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
++vcpu->stat.exits;
}
+ kvm_load_host_pkru(vcpu);
+
/*
* Do this here before restoring debug registers on the host. And
* since we do this before handling the vmexit, a DR access vmexit
@@ -11377,6 +11362,8 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
vcpu->mode = OUTSIDE_GUEST_MODE;
smp_wmb();
+ kvm_load_xfeatures(vcpu, false);
+
/*
* Sync xfd before calling handle_exit_irqoff() which may
* rely on the fact that guest_fpu::xfd is up-to-date (e.g.
@@ -12734,8 +12721,6 @@ fail_mmu_destroy:
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
- struct kvm *kvm = vcpu->kvm;
-
if (mutex_lock_killable(&vcpu->mutex))
return;
vcpu_load(vcpu);
@@ -12746,10 +12731,6 @@ void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
vcpu->arch.msr_kvm_poll_control = 1;
mutex_unlock(&vcpu->mutex);
-
- if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
- schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
- KVMCLOCK_SYNC_PERIOD);
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
@@ -13088,7 +13069,21 @@ int kvm_arch_enable_virtualization_cpu(void)
void kvm_arch_disable_virtualization_cpu(void)
{
kvm_x86_call(disable_virtualization_cpu)();
- drop_user_return_notifiers();
+
+ /*
+ * Leave the user-return notifiers as-is when disabling virtualization
+ * for reboot, i.e. when disabling via IPI function call, and instead
+ * pin kvm.ko (if it's a module) to defend against use-after-free (in
+ * the *very* unlikely scenario module unload is racing with reboot).
+ * On a forced reboot, tasks aren't frozen before shutdown, and so KVM
+ * could be actively modifying user-return MSR state when the IPI to
+ * disable virtualization arrives. Handle the extreme edge case here
+ * instead of trying to account for it in the normal flows.
+ */
+ if (in_task() || WARN_ON_ONCE(!kvm_rebooting))
+ drop_user_return_notifiers();
+ else
+ __module_get(THIS_MODULE);
}
bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
@@ -13160,9 +13155,6 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
kvm->arch.hv_root_tdp = INVALID_PAGE;
#endif
- INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
- INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
-
kvm_apicv_init(kvm);
kvm_hv_init_vm(kvm);
kvm_xen_init_vm(kvm);
@@ -13269,9 +13261,6 @@ void kvm_arch_pre_destroy_vm(struct kvm *kvm)
* is unsafe, i.e. will lead to use-after-free. The PIT also needs to
* be stopped before IRQ routing is freed.
*/
- cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
- cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
-
#ifdef CONFIG_KVM_IOAPIC
kvm_free_pit(kvm);
#endif
@@ -13888,7 +13877,7 @@ void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
if ((work->wakeup_all || work->notpresent_injected) &&
kvm_pv_async_pf_enabled(vcpu) &&
!apf_put_user_ready(vcpu, work->arch.token)) {
- vcpu->arch.apf.pageready_pending = true;
+ WRITE_ONCE(vcpu->arch.apf.pageready_pending, true);
kvm_apic_set_irq(vcpu, &irq, NULL);
}
@@ -13899,7 +13888,11 @@ void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
{
kvm_make_request(KVM_REQ_APF_READY, vcpu);
- if (!vcpu->arch.apf.pageready_pending)
+
+ /* Pairs with smp_store_mb() in kvm_set_msr_common(). */
+ smp_mb__after_atomic();
+
+ if (!READ_ONCE(vcpu->arch.apf.pageready_pending))
kvm_vcpu_kick(vcpu);
}
diff --git a/arch/x86/kvm/x86.h b/arch/x86/kvm/x86.h
index f3dc77f006f9..fdab0ad49098 100644
--- a/arch/x86/kvm/x86.h
+++ b/arch/x86/kvm/x86.h
@@ -420,6 +420,20 @@ static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
return !(kvm->arch.disabled_quirks & quirk);
}
+static __always_inline void kvm_request_l1tf_flush_l1d(void)
+{
+#if IS_ENABLED(CONFIG_CPU_MITIGATIONS) && IS_ENABLED(CONFIG_KVM_INTEL)
+ /*
+ * Use a raw write to set the per-CPU flag, as KVM will ensure a flush
+ * even if preemption is currently enabled.. If the current vCPU task
+ * is migrated to a different CPU (or userspace runs the vCPU on a
+ * different task) before the next VM-Entry, then kvm_arch_vcpu_load()
+ * will request a flush on the new CPU.
+ */
+ raw_cpu_write(irq_stat.kvm_cpu_l1tf_flush_l1d, 1);
+#endif
+}
+
void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
u64 get_kvmclock_ns(struct kvm *kvm);
@@ -622,8 +636,6 @@ static inline void kvm_machine_check(void)
#endif
}
-void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu);
-void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu);
int kvm_spec_ctrl_test_value(u64 value);
int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
struct x86_exception *e);