diff options
Diffstat (limited to 'kernel/bpf')
| -rw-r--r-- | kernel/bpf/arraymap.c | 11 | ||||
| -rw-r--r-- | kernel/bpf/bpf_iter.c | 11 | ||||
| -rw-r--r-- | kernel/bpf/bpf_local_storage.c | 8 | ||||
| -rw-r--r-- | kernel/bpf/btf.c | 56 | ||||
| -rw-r--r-- | kernel/bpf/cgroup.c | 182 | ||||
| -rw-r--r-- | kernel/bpf/core.c | 32 | ||||
| -rw-r--r-- | kernel/bpf/helpers.c | 382 | ||||
| -rw-r--r-- | kernel/bpf/local_storage.c | 9 | ||||
| -rw-r--r-- | kernel/bpf/syscall.c | 180 | ||||
| -rw-r--r-- | kernel/bpf/tnum.c | 5 | ||||
| -rw-r--r-- | kernel/bpf/trampoline.c | 41 | ||||
| -rw-r--r-- | kernel/bpf/verifier.c | 1785 |
12 files changed, 1970 insertions, 732 deletions
diff --git a/kernel/bpf/arraymap.c b/kernel/bpf/arraymap.c index eb28c0f219ee..3d080916faf9 100644 --- a/kernel/bpf/arraymap.c +++ b/kernel/bpf/arraymap.c @@ -530,8 +530,6 @@ static int array_map_check_btf(const struct bpf_map *map, const struct btf_type *key_type, const struct btf_type *value_type) { - u32 int_data; - /* One exception for keyless BTF: .bss/.data/.rodata map */ if (btf_type_is_void(key_type)) { if (map->map_type != BPF_MAP_TYPE_ARRAY || @@ -544,14 +542,11 @@ static int array_map_check_btf(const struct bpf_map *map, return 0; } - if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) - return -EINVAL; - - int_data = *(u32 *)(key_type + 1); - /* bpf array can only take a u32 key. This check makes sure + /* + * Bpf array can only take a u32 key. This check makes sure * that the btf matches the attr used during map_create. */ - if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) + if (!btf_type_is_i32(key_type)) return -EINVAL; return 0; diff --git a/kernel/bpf/bpf_iter.c b/kernel/bpf/bpf_iter.c index 380e9a7cac75..303ab1f42d3a 100644 --- a/kernel/bpf/bpf_iter.c +++ b/kernel/bpf/bpf_iter.c @@ -38,8 +38,7 @@ static DEFINE_MUTEX(link_mutex); /* incremented on every opened seq_file */ static atomic64_t session_id; -static int prepare_seq_file(struct file *file, struct bpf_iter_link *link, - const struct bpf_iter_seq_info *seq_info); +static int prepare_seq_file(struct file *file, struct bpf_iter_link *link); static void bpf_iter_inc_seq_num(struct seq_file *seq) { @@ -257,7 +256,7 @@ static int iter_open(struct inode *inode, struct file *file) { struct bpf_iter_link *link = inode->i_private; - return prepare_seq_file(file, link, __get_seq_info(link)); + return prepare_seq_file(file, link); } static int iter_release(struct inode *inode, struct file *file) @@ -586,9 +585,9 @@ static void init_seq_meta(struct bpf_iter_priv_data *priv_data, priv_data->done_stop = false; } -static int prepare_seq_file(struct file *file, struct bpf_iter_link *link, - const struct bpf_iter_seq_info *seq_info) +static int prepare_seq_file(struct file *file, struct bpf_iter_link *link) { + const struct bpf_iter_seq_info *seq_info = __get_seq_info(link); struct bpf_iter_priv_data *priv_data; struct bpf_iter_target_info *tinfo; struct bpf_prog *prog; @@ -653,7 +652,7 @@ int bpf_iter_new_fd(struct bpf_link *link) } iter_link = container_of(link, struct bpf_iter_link, link); - err = prepare_seq_file(file, iter_link, __get_seq_info(iter_link)); + err = prepare_seq_file(file, iter_link); if (err) goto free_file; diff --git a/kernel/bpf/bpf_local_storage.c b/kernel/bpf/bpf_local_storage.c index fa56c30833ff..b931fbceb54d 100644 --- a/kernel/bpf/bpf_local_storage.c +++ b/kernel/bpf/bpf_local_storage.c @@ -722,13 +722,7 @@ int bpf_local_storage_map_check_btf(const struct bpf_map *map, const struct btf_type *key_type, const struct btf_type *value_type) { - u32 int_data; - - if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) - return -EINVAL; - - int_data = *(u32 *)(key_type + 1); - if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) + if (!btf_type_is_i32(key_type)) return -EINVAL; return 0; diff --git a/kernel/bpf/btf.c b/kernel/bpf/btf.c index 1d2cf898e21e..05fd64a371af 100644 --- a/kernel/bpf/btf.c +++ b/kernel/bpf/btf.c @@ -858,26 +858,37 @@ const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) EXPORT_SYMBOL_GPL(btf_type_by_id); /* - * Regular int is not a bit field and it must be either - * u8/u16/u32/u64 or __int128. + * Check that the type @t is a regular int. This means that @t is not + * a bit field and it has the same size as either of u8/u16/u32/u64 + * or __int128. If @expected_size is not zero, then size of @t should + * be the same. A caller should already have checked that the type @t + * is an integer. */ +static bool __btf_type_int_is_regular(const struct btf_type *t, size_t expected_size) +{ + u32 int_data = btf_type_int(t); + u8 nr_bits = BTF_INT_BITS(int_data); + u8 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); + + return BITS_PER_BYTE_MASKED(nr_bits) == 0 && + BTF_INT_OFFSET(int_data) == 0 && + (nr_bytes <= 16 && is_power_of_2(nr_bytes)) && + (expected_size == 0 || nr_bytes == expected_size); +} + static bool btf_type_int_is_regular(const struct btf_type *t) { - u8 nr_bits, nr_bytes; - u32 int_data; + return __btf_type_int_is_regular(t, 0); +} - int_data = btf_type_int(t); - nr_bits = BTF_INT_BITS(int_data); - nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); - if (BITS_PER_BYTE_MASKED(nr_bits) || - BTF_INT_OFFSET(int_data) || - (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && - nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && - nr_bytes != (2 * sizeof(u64)))) { - return false; - } +bool btf_type_is_i32(const struct btf_type *t) +{ + return btf_type_is_int(t) && __btf_type_int_is_regular(t, 4); +} - return true; +bool btf_type_is_i64(const struct btf_type *t) +{ + return btf_type_is_int(t) && __btf_type_int_is_regular(t, 8); } /* @@ -3443,7 +3454,8 @@ btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, node_field_name = strstr(value_type, ":"); if (!node_field_name) return -EINVAL; - value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); + value_type = kstrndup(value_type, node_field_name - value_type, + GFP_KERNEL_ACCOUNT | __GFP_NOWARN); if (!value_type) return -ENOMEM; id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); @@ -3958,7 +3970,7 @@ struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type /* This needs to be kzalloc to zero out padding and unused fields, see * comment in btf_record_equal. */ - rec = kzalloc(struct_size(rec, fields, cnt), GFP_KERNEL | __GFP_NOWARN); + rec = kzalloc(struct_size(rec, fields, cnt), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); if (!rec) return ERR_PTR(-ENOMEM); @@ -9019,7 +9031,7 @@ static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, bpf_free_cands_from_cache(*cc); *cc = NULL; } - new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); + new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL_ACCOUNT); if (!new_cands) { bpf_free_cands(cands); return ERR_PTR(-ENOMEM); @@ -9027,7 +9039,7 @@ static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, /* strdup the name, since it will stay in cache. * the cands->name points to strings in prog's BTF and the prog can be unloaded. */ - new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); + new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL_ACCOUNT); bpf_free_cands(cands); if (!new_cands->name) { kfree(new_cands); @@ -9111,7 +9123,7 @@ bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, continue; /* most of the time there is only one candidate for a given kind+name pair */ - new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); + new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL_ACCOUNT); if (!new_cands) { bpf_free_cands(cands); return ERR_PTR(-ENOMEM); @@ -9228,7 +9240,7 @@ int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" * into arrays of btf_ids of struct fields and array indices. */ - specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); + specs = kcalloc(3, sizeof(*specs), GFP_KERNEL_ACCOUNT); if (!specs) return -ENOMEM; @@ -9253,7 +9265,7 @@ int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, goto out; } if (cc->cnt) { - cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); + cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL_ACCOUNT); if (!cands.cands) { err = -ENOMEM; goto out; diff --git a/kernel/bpf/cgroup.c b/kernel/bpf/cgroup.c index f4885514f007..cd220e861d67 100644 --- a/kernel/bpf/cgroup.c +++ b/kernel/bpf/cgroup.c @@ -658,6 +658,116 @@ static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs, return NULL; } +static struct bpf_link *bpf_get_anchor_link(u32 flags, u32 id_or_fd) +{ + struct bpf_link *link = ERR_PTR(-EINVAL); + + if (flags & BPF_F_ID) + link = bpf_link_by_id(id_or_fd); + else if (id_or_fd) + link = bpf_link_get_from_fd(id_or_fd); + return link; +} + +static struct bpf_prog *bpf_get_anchor_prog(u32 flags, u32 id_or_fd) +{ + struct bpf_prog *prog = ERR_PTR(-EINVAL); + + if (flags & BPF_F_ID) + prog = bpf_prog_by_id(id_or_fd); + else if (id_or_fd) + prog = bpf_prog_get(id_or_fd); + return prog; +} + +static struct bpf_prog_list *get_prog_list(struct hlist_head *progs, struct bpf_prog *prog, + struct bpf_cgroup_link *link, u32 flags, u32 id_or_fd) +{ + bool is_link = flags & BPF_F_LINK, is_id = flags & BPF_F_ID; + struct bpf_prog_list *pltmp, *pl = ERR_PTR(-EINVAL); + bool preorder = flags & BPF_F_PREORDER; + struct bpf_link *anchor_link = NULL; + struct bpf_prog *anchor_prog = NULL; + bool is_before, is_after; + + is_before = flags & BPF_F_BEFORE; + is_after = flags & BPF_F_AFTER; + if (is_link || is_id || id_or_fd) { + /* flags must have either BPF_F_BEFORE or BPF_F_AFTER */ + if (is_before == is_after) + return ERR_PTR(-EINVAL); + if ((is_link && !link) || (!is_link && !prog)) + return ERR_PTR(-EINVAL); + } else if (!hlist_empty(progs)) { + /* flags cannot have both BPF_F_BEFORE and BPF_F_AFTER */ + if (is_before && is_after) + return ERR_PTR(-EINVAL); + } + + if (is_link) { + anchor_link = bpf_get_anchor_link(flags, id_or_fd); + if (IS_ERR(anchor_link)) + return ERR_PTR(PTR_ERR(anchor_link)); + } else if (is_id || id_or_fd) { + anchor_prog = bpf_get_anchor_prog(flags, id_or_fd); + if (IS_ERR(anchor_prog)) + return ERR_PTR(PTR_ERR(anchor_prog)); + } + + if (!anchor_prog && !anchor_link) { + /* if there is no anchor_prog/anchor_link, then BPF_F_PREORDER + * doesn't matter since either prepend or append to a combined + * list of progs will end up with correct result. + */ + hlist_for_each_entry(pltmp, progs, node) { + if (is_before) + return pltmp; + if (pltmp->node.next) + continue; + return pltmp; + } + return NULL; + } + + hlist_for_each_entry(pltmp, progs, node) { + if ((anchor_prog && anchor_prog == pltmp->prog) || + (anchor_link && anchor_link == &pltmp->link->link)) { + if (!!(pltmp->flags & BPF_F_PREORDER) != preorder) + goto out; + pl = pltmp; + goto out; + } + } + + pl = ERR_PTR(-ENOENT); +out: + if (anchor_link) + bpf_link_put(anchor_link); + else + bpf_prog_put(anchor_prog); + return pl; +} + +static int insert_pl_to_hlist(struct bpf_prog_list *pl, struct hlist_head *progs, + struct bpf_prog *prog, struct bpf_cgroup_link *link, + u32 flags, u32 id_or_fd) +{ + struct bpf_prog_list *pltmp; + + pltmp = get_prog_list(progs, prog, link, flags, id_or_fd); + if (IS_ERR(pltmp)) + return PTR_ERR(pltmp); + + if (!pltmp) + hlist_add_head(&pl->node, progs); + else if (flags & BPF_F_BEFORE) + hlist_add_before(&pl->node, &pltmp->node); + else + hlist_add_behind(&pl->node, &pltmp->node); + + return 0; +} + /** * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and * propagate the change to descendants @@ -667,6 +777,8 @@ static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs, * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set * @type: Type of attach operation * @flags: Option flags + * @id_or_fd: Relative prog id or fd + * @revision: bpf_prog_list revision * * Exactly one of @prog or @link can be non-null. * Must be called with cgroup_mutex held. @@ -674,7 +786,8 @@ static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs, static int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, struct bpf_prog *replace_prog, struct bpf_cgroup_link *link, - enum bpf_attach_type type, u32 flags) + enum bpf_attach_type type, u32 flags, u32 id_or_fd, + u64 revision) { u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI)); struct bpf_prog *old_prog = NULL; @@ -690,6 +803,9 @@ static int __cgroup_bpf_attach(struct cgroup *cgrp, ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI))) /* invalid combination */ return -EINVAL; + if ((flags & BPF_F_REPLACE) && (flags & (BPF_F_BEFORE | BPF_F_AFTER))) + /* only either replace or insertion with before/after */ + return -EINVAL; if (link && (prog || replace_prog)) /* only either link or prog/replace_prog can be specified */ return -EINVAL; @@ -700,6 +816,8 @@ static int __cgroup_bpf_attach(struct cgroup *cgrp, atype = bpf_cgroup_atype_find(type, new_prog->aux->attach_btf_id); if (atype < 0) return -EINVAL; + if (revision && revision != cgrp->bpf.revisions[atype]) + return -ESTALE; progs = &cgrp->bpf.progs[atype]; @@ -728,22 +846,18 @@ static int __cgroup_bpf_attach(struct cgroup *cgrp, if (pl) { old_prog = pl->prog; } else { - struct hlist_node *last = NULL; - pl = kmalloc(sizeof(*pl), GFP_KERNEL); if (!pl) { bpf_cgroup_storages_free(new_storage); return -ENOMEM; } - if (hlist_empty(progs)) - hlist_add_head(&pl->node, progs); - else - hlist_for_each(last, progs) { - if (last->next) - continue; - hlist_add_behind(&pl->node, last); - break; - } + + err = insert_pl_to_hlist(pl, progs, prog, link, flags, id_or_fd); + if (err) { + kfree(pl); + bpf_cgroup_storages_free(new_storage); + return err; + } } pl->prog = prog; @@ -762,6 +876,7 @@ static int __cgroup_bpf_attach(struct cgroup *cgrp, if (err) goto cleanup_trampoline; + cgrp->bpf.revisions[atype] += 1; if (old_prog) { if (type == BPF_LSM_CGROUP) bpf_trampoline_unlink_cgroup_shim(old_prog); @@ -793,12 +908,13 @@ static int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, struct bpf_prog *replace_prog, struct bpf_cgroup_link *link, enum bpf_attach_type type, - u32 flags) + u32 flags, u32 id_or_fd, u64 revision) { int ret; cgroup_lock(); - ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags); + ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags, + id_or_fd, revision); cgroup_unlock(); return ret; } @@ -886,6 +1002,7 @@ static int __cgroup_bpf_replace(struct cgroup *cgrp, if (!found) return -ENOENT; + cgrp->bpf.revisions[atype] += 1; old_prog = xchg(&link->link.prog, new_prog); replace_effective_prog(cgrp, atype, link); bpf_prog_put(old_prog); @@ -1011,12 +1128,14 @@ found: * @prog: A program to detach or NULL * @link: A link to detach or NULL * @type: Type of detach operation + * @revision: bpf_prog_list revision * * At most one of @prog or @link can be non-NULL. * Must be called with cgroup_mutex held. */ static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, - struct bpf_cgroup_link *link, enum bpf_attach_type type) + struct bpf_cgroup_link *link, enum bpf_attach_type type, + u64 revision) { enum cgroup_bpf_attach_type atype; struct bpf_prog *old_prog; @@ -1034,6 +1153,9 @@ static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, if (atype < 0) return -EINVAL; + if (revision && revision != cgrp->bpf.revisions[atype]) + return -ESTALE; + progs = &cgrp->bpf.progs[atype]; flags = cgrp->bpf.flags[atype]; @@ -1059,6 +1181,7 @@ static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, /* now can actually delete it from this cgroup list */ hlist_del(&pl->node); + cgrp->bpf.revisions[atype] += 1; kfree(pl); if (hlist_empty(progs)) @@ -1074,12 +1197,12 @@ static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, } static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, - enum bpf_attach_type type) + enum bpf_attach_type type, u64 revision) { int ret; cgroup_lock(); - ret = __cgroup_bpf_detach(cgrp, prog, NULL, type); + ret = __cgroup_bpf_detach(cgrp, prog, NULL, type, revision); cgroup_unlock(); return ret; } @@ -1097,6 +1220,7 @@ static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, struct bpf_prog_array *effective; int cnt, ret = 0, i; int total_cnt = 0; + u64 revision = 0; u32 flags; if (effective_query && prog_attach_flags) @@ -1134,6 +1258,10 @@ static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, return -EFAULT; if (copy_to_user(&uattr->query.prog_cnt, &total_cnt, sizeof(total_cnt))) return -EFAULT; + if (!effective_query && from_atype == to_atype) + revision = cgrp->bpf.revisions[from_atype]; + if (copy_to_user(&uattr->query.revision, &revision, sizeof(revision))) + return -EFAULT; if (attr->query.prog_cnt == 0 || !prog_ids || !total_cnt) /* return early if user requested only program count + flags */ return 0; @@ -1216,7 +1344,8 @@ int cgroup_bpf_prog_attach(const union bpf_attr *attr, } ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL, - attr->attach_type, attr->attach_flags); + attr->attach_type, attr->attach_flags, + attr->relative_fd, attr->expected_revision); if (replace_prog) bpf_prog_put(replace_prog); @@ -1238,7 +1367,7 @@ int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) if (IS_ERR(prog)) prog = NULL; - ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type); + ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, attr->expected_revision); if (prog) bpf_prog_put(prog); @@ -1267,7 +1396,7 @@ static void bpf_cgroup_link_release(struct bpf_link *link) } WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link, - cg_link->type)); + cg_link->type, 0)); if (cg_link->type == BPF_LSM_CGROUP) bpf_trampoline_unlink_cgroup_shim(cg_link->link.prog); @@ -1339,6 +1468,13 @@ static const struct bpf_link_ops bpf_cgroup_link_lops = { .fill_link_info = bpf_cgroup_link_fill_link_info, }; +#define BPF_F_LINK_ATTACH_MASK \ + (BPF_F_ID | \ + BPF_F_BEFORE | \ + BPF_F_AFTER | \ + BPF_F_PREORDER | \ + BPF_F_LINK) + int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) { struct bpf_link_primer link_primer; @@ -1346,7 +1482,7 @@ int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) struct cgroup *cgrp; int err; - if (attr->link_create.flags) + if (attr->link_create.flags & (~BPF_F_LINK_ATTACH_MASK)) return -EINVAL; cgrp = cgroup_get_from_fd(attr->link_create.target_fd); @@ -1370,7 +1506,9 @@ int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) } err = cgroup_bpf_attach(cgrp, NULL, NULL, link, - link->type, BPF_F_ALLOW_MULTI); + link->type, BPF_F_ALLOW_MULTI | attr->link_create.flags, + attr->link_create.cgroup.relative_fd, + attr->link_create.cgroup.expected_revision); if (err) { bpf_link_cleanup(&link_primer); goto out_put_cgroup; diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c index c20babbf998f..e536a34a32c8 100644 --- a/kernel/bpf/core.c +++ b/kernel/bpf/core.c @@ -2102,14 +2102,15 @@ out: #undef COND_JMP /* ST, STX and LDX*/ ST_NOSPEC: - /* Speculation barrier for mitigating Speculative Store Bypass. - * In case of arm64, we rely on the firmware mitigation as - * controlled via the ssbd kernel parameter. Whenever the - * mitigation is enabled, it works for all of the kernel code - * with no need to provide any additional instructions here. - * In case of x86, we use 'lfence' insn for mitigation. We - * reuse preexisting logic from Spectre v1 mitigation that - * happens to produce the required code on x86 for v4 as well. + /* Speculation barrier for mitigating Speculative Store Bypass, + * Bounds-Check Bypass and Type Confusion. In case of arm64, we + * rely on the firmware mitigation as controlled via the ssbd + * kernel parameter. Whenever the mitigation is enabled, it + * works for all of the kernel code with no need to provide any + * additional instructions here. In case of x86, we use 'lfence' + * insn for mitigation. We reuse preexisting logic from Spectre + * v1 mitigation that happens to produce the required code on + * x86 for v4 as well. */ barrier_nospec(); CONT; @@ -3034,6 +3035,21 @@ bool __weak bpf_jit_needs_zext(void) return false; } +/* By default, enable the verifier's mitigations against Spectre v1 and v4 for + * all archs. The value returned must not change at runtime as there is + * currently no support for reloading programs that were loaded without + * mitigations. + */ +bool __weak bpf_jit_bypass_spec_v1(void) +{ + return false; +} + +bool __weak bpf_jit_bypass_spec_v4(void) +{ + return false; +} + /* Return true if the JIT inlines the call to the helper corresponding to * the imm. * diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c index b71e428ad936..2cdcf7b2c91e 100644 --- a/kernel/bpf/helpers.c +++ b/kernel/bpf/helpers.c @@ -24,6 +24,7 @@ #include <linux/bpf_mem_alloc.h> #include <linux/kasan.h> #include <linux/bpf_verifier.h> +#include <linux/uaccess.h> #include "../../lib/kstrtox.h" @@ -3278,6 +3279,376 @@ __bpf_kfunc void __bpf_trap(void) { } +/* + * Kfuncs for string operations. + * + * Since strings are not necessarily %NUL-terminated, we cannot directly call + * in-kernel implementations. Instead, we open-code the implementations using + * __get_kernel_nofault instead of plain dereference to make them safe. + */ + +/** + * bpf_strcmp - Compare two strings + * @s1__ign: One string + * @s2__ign: Another string + * + * Return: + * * %0 - Strings are equal + * * %-1 - @s1__ign is smaller + * * %1 - @s2__ign is smaller + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of strings is too large + * * %-ERANGE - One of strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strcmp(const char *s1__ign, const char *s2__ign) +{ + char c1, c2; + int i; + + if (!copy_from_kernel_nofault_allowed(s1__ign, 1) || + !copy_from_kernel_nofault_allowed(s2__ign, 1)) { + return -ERANGE; + } + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&c1, s1__ign, char, err_out); + __get_kernel_nofault(&c2, s2__ign, char, err_out); + if (c1 != c2) + return c1 < c2 ? -1 : 1; + if (c1 == '\0') + return 0; + s1__ign++; + s2__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strnchr - Find a character in a length limited string + * @s__ign: The string to be searched + * @count: The number of characters to be searched + * @c: The character to search for + * + * Note that the %NUL-terminator is considered part of the string, and can + * be searched for. + * + * Return: + * * >=0 - Index of the first occurrence of @c within @s__ign + * * %-ENOENT - @c not found in the first @count characters of @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strnchr(const char *s__ign, size_t count, char c) +{ + char sc; + int i; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1)) + return -ERANGE; + + guard(pagefault)(); + for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&sc, s__ign, char, err_out); + if (sc == c) + return i; + if (sc == '\0') + return -ENOENT; + s__ign++; + } + return i == XATTR_SIZE_MAX ? -E2BIG : -ENOENT; +err_out: + return -EFAULT; +} + +/** + * bpf_strchr - Find the first occurrence of a character in a string + * @s__ign: The string to be searched + * @c: The character to search for + * + * Note that the %NUL-terminator is considered part of the string, and can + * be searched for. + * + * Return: + * * >=0 - The index of the first occurrence of @c within @s__ign + * * %-ENOENT - @c not found in @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strchr(const char *s__ign, char c) +{ + return bpf_strnchr(s__ign, XATTR_SIZE_MAX, c); +} + +/** + * bpf_strchrnul - Find and return a character in a string, or end of string + * @s__ign: The string to be searched + * @c: The character to search for + * + * Return: + * * >=0 - Index of the first occurrence of @c within @s__ign or index of + * the null byte at the end of @s__ign when @c is not found + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strchrnul(const char *s__ign, char c) +{ + char sc; + int i; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1)) + return -ERANGE; + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&sc, s__ign, char, err_out); + if (sc == '\0' || sc == c) + return i; + s__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strrchr - Find the last occurrence of a character in a string + * @s__ign: The string to be searched + * @c: The character to search for + * + * Return: + * * >=0 - Index of the last occurrence of @c within @s__ign + * * %-ENOENT - @c not found in @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strrchr(const char *s__ign, int c) +{ + char sc; + int i, last = -ENOENT; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1)) + return -ERANGE; + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&sc, s__ign, char, err_out); + if (sc == c) + last = i; + if (sc == '\0') + return last; + s__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strlen - Calculate the length of a length-limited string + * @s__ign: The string + * @count: The maximum number of characters to count + * + * Return: + * * >=0 - The length of @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strnlen(const char *s__ign, size_t count) +{ + char c; + int i; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1)) + return -ERANGE; + + guard(pagefault)(); + for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&c, s__ign, char, err_out); + if (c == '\0') + return i; + s__ign++; + } + return i == XATTR_SIZE_MAX ? -E2BIG : i; +err_out: + return -EFAULT; +} + +/** + * bpf_strlen - Calculate the length of a string + * @s__ign: The string + * + * Return: + * * >=0 - The length of @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strlen(const char *s__ign) +{ + return bpf_strnlen(s__ign, XATTR_SIZE_MAX); +} + +/** + * bpf_strspn - Calculate the length of the initial substring of @s__ign which + * only contains letters in @accept__ign + * @s__ign: The string to be searched + * @accept__ign: The string to search for + * + * Return: + * * >=0 - The length of the initial substring of @s__ign which only + * contains letters from @accept__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strspn(const char *s__ign, const char *accept__ign) +{ + char cs, ca; + int i, j; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1) || + !copy_from_kernel_nofault_allowed(accept__ign, 1)) { + return -ERANGE; + } + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&cs, s__ign, char, err_out); + if (cs == '\0') + return i; + for (j = 0; j < XATTR_SIZE_MAX; j++) { + __get_kernel_nofault(&ca, accept__ign + j, char, err_out); + if (cs == ca || ca == '\0') + break; + } + if (j == XATTR_SIZE_MAX) + return -E2BIG; + if (ca == '\0') + return i; + s__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * strcspn - Calculate the length of the initial substring of @s__ign which + * does not contain letters in @reject__ign + * @s__ign: The string to be searched + * @reject__ign: The string to search for + * + * Return: + * * >=0 - The length of the initial substring of @s__ign which does not + * contain letters from @reject__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strcspn(const char *s__ign, const char *reject__ign) +{ + char cs, cr; + int i, j; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1) || + !copy_from_kernel_nofault_allowed(reject__ign, 1)) { + return -ERANGE; + } + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&cs, s__ign, char, err_out); + if (cs == '\0') + return i; + for (j = 0; j < XATTR_SIZE_MAX; j++) { + __get_kernel_nofault(&cr, reject__ign + j, char, err_out); + if (cs == cr || cr == '\0') + break; + } + if (j == XATTR_SIZE_MAX) + return -E2BIG; + if (cr != '\0') + return i; + s__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strnstr - Find the first substring in a length-limited string + * @s1__ign: The string to be searched + * @s2__ign: The string to search for + * @len: the maximum number of characters to search + * + * Return: + * * >=0 - Index of the first character of the first occurrence of @s2__ign + * within the first @len characters of @s1__ign + * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strnstr(const char *s1__ign, const char *s2__ign, size_t len) +{ + char c1, c2; + int i, j; + + if (!copy_from_kernel_nofault_allowed(s1__ign, 1) || + !copy_from_kernel_nofault_allowed(s2__ign, 1)) { + return -ERANGE; + } + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + for (j = 0; i + j < len && j < XATTR_SIZE_MAX; j++) { + __get_kernel_nofault(&c2, s2__ign + j, char, err_out); + if (c2 == '\0') + return i; + __get_kernel_nofault(&c1, s1__ign + j, char, err_out); + if (c1 == '\0') + return -ENOENT; + if (c1 != c2) + break; + } + if (j == XATTR_SIZE_MAX) + return -E2BIG; + if (i + j == len) + return -ENOENT; + s1__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strstr - Find the first substring in a string + * @s1__ign: The string to be searched + * @s2__ign: The string to search for + * + * Return: + * * >=0 - Index of the first character of the first occurrence of @s2__ign + * within @s1__ign + * * %-ENOENT - @s2__ign is not a substring of @s1__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strstr(const char *s1__ign, const char *s2__ign) +{ + return bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX); +} + __bpf_kfunc_end_defs(); BTF_KFUNCS_START(generic_btf_ids) @@ -3397,6 +3768,17 @@ BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPAB BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE) #endif BTF_ID_FLAGS(func, __bpf_trap) +BTF_ID_FLAGS(func, bpf_strcmp); +BTF_ID_FLAGS(func, bpf_strchr); +BTF_ID_FLAGS(func, bpf_strchrnul); +BTF_ID_FLAGS(func, bpf_strnchr); +BTF_ID_FLAGS(func, bpf_strrchr); +BTF_ID_FLAGS(func, bpf_strlen); +BTF_ID_FLAGS(func, bpf_strnlen); +BTF_ID_FLAGS(func, bpf_strspn); +BTF_ID_FLAGS(func, bpf_strcspn); +BTF_ID_FLAGS(func, bpf_strstr); +BTF_ID_FLAGS(func, bpf_strnstr); BTF_KFUNCS_END(common_btf_ids) static const struct btf_kfunc_id_set common_kfunc_set = { diff --git a/kernel/bpf/local_storage.c b/kernel/bpf/local_storage.c index 3969eb0382af..632d51b05fe9 100644 --- a/kernel/bpf/local_storage.c +++ b/kernel/bpf/local_storage.c @@ -394,17 +394,10 @@ static int cgroup_storage_check_btf(const struct bpf_map *map, if (!btf_member_is_reg_int(btf, key_type, m, offset, size)) return -EINVAL; } else { - u32 int_data; - /* * Key is expected to be u64, which stores the cgroup_inode_id */ - - if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) - return -EINVAL; - - int_data = *(u32 *)(key_type + 1); - if (BTF_INT_BITS(int_data) != 64 || BTF_INT_OFFSET(int_data)) + if (!btf_type_is_i64(key_type)) return -EINVAL; } diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c index dd5304c6ac3c..56500381c28a 100644 --- a/kernel/bpf/syscall.c +++ b/kernel/bpf/syscall.c @@ -3403,10 +3403,12 @@ static void bpf_tracing_link_show_fdinfo(const struct bpf_link *link, seq_printf(seq, "attach_type:\t%d\n" "target_obj_id:\t%u\n" - "target_btf_id:\t%u\n", + "target_btf_id:\t%u\n" + "cookie:\t%llu\n", tr_link->attach_type, target_obj_id, - target_btf_id); + target_btf_id, + tr_link->link.cookie); } static int bpf_tracing_link_fill_link_info(const struct bpf_link *link, @@ -3416,6 +3418,7 @@ static int bpf_tracing_link_fill_link_info(const struct bpf_link *link, container_of(link, struct bpf_tracing_link, link.link); info->tracing.attach_type = tr_link->attach_type; + info->tracing.cookie = tr_link->link.cookie; bpf_trampoline_unpack_key(tr_link->trampoline->key, &info->tracing.target_obj_id, &info->tracing.target_btf_id); @@ -3651,8 +3654,10 @@ static void bpf_raw_tp_link_show_fdinfo(const struct bpf_link *link, container_of(link, struct bpf_raw_tp_link, link); seq_printf(seq, - "tp_name:\t%s\n", - raw_tp_link->btp->tp->name); + "tp_name:\t%s\n" + "cookie:\t%llu\n", + raw_tp_link->btp->tp->name, + raw_tp_link->cookie); } static int bpf_copy_to_user(char __user *ubuf, const char *buf, u32 ulen, @@ -3688,6 +3693,7 @@ static int bpf_raw_tp_link_fill_link_info(const struct bpf_link *link, return -EINVAL; info->raw_tracepoint.tp_name_len = tp_len + 1; + info->raw_tracepoint.cookie = raw_tp_link->cookie; if (!ubuf) return 0; @@ -3794,6 +3800,32 @@ static int bpf_perf_link_fill_kprobe(const struct perf_event *event, info->perf_event.kprobe.cookie = event->bpf_cookie; return 0; } + +static void bpf_perf_link_fdinfo_kprobe(const struct perf_event *event, + struct seq_file *seq) +{ + const char *name; + int err; + u32 prog_id, type; + u64 offset, addr; + unsigned long missed; + + err = bpf_get_perf_event_info(event, &prog_id, &type, &name, + &offset, &addr, &missed); + if (err) + return; + + seq_printf(seq, + "name:\t%s\n" + "offset:\t%#llx\n" + "missed:\t%lu\n" + "addr:\t%#llx\n" + "event_type:\t%s\n" + "cookie:\t%llu\n", + name, offset, missed, addr, + type == BPF_FD_TYPE_KRETPROBE ? "kretprobe" : "kprobe", + event->bpf_cookie); +} #endif #ifdef CONFIG_UPROBE_EVENTS @@ -3822,6 +3854,31 @@ static int bpf_perf_link_fill_uprobe(const struct perf_event *event, info->perf_event.uprobe.ref_ctr_offset = ref_ctr_offset; return 0; } + +static void bpf_perf_link_fdinfo_uprobe(const struct perf_event *event, + struct seq_file *seq) +{ + const char *name; + int err; + u32 prog_id, type; + u64 offset, ref_ctr_offset; + unsigned long missed; + + err = bpf_get_perf_event_info(event, &prog_id, &type, &name, + &offset, &ref_ctr_offset, &missed); + if (err) + return; + + seq_printf(seq, + "name:\t%s\n" + "offset:\t%#llx\n" + "ref_ctr_offset:\t%#llx\n" + "event_type:\t%s\n" + "cookie:\t%llu\n", + name, offset, ref_ctr_offset, + type == BPF_FD_TYPE_URETPROBE ? "uretprobe" : "uprobe", + event->bpf_cookie); +} #endif static int bpf_perf_link_fill_probe(const struct perf_event *event, @@ -3890,10 +3947,79 @@ static int bpf_perf_link_fill_link_info(const struct bpf_link *link, } } +static void bpf_perf_event_link_show_fdinfo(const struct perf_event *event, + struct seq_file *seq) +{ + seq_printf(seq, + "type:\t%u\n" + "config:\t%llu\n" + "event_type:\t%s\n" + "cookie:\t%llu\n", + event->attr.type, event->attr.config, + "event", event->bpf_cookie); +} + +static void bpf_tracepoint_link_show_fdinfo(const struct perf_event *event, + struct seq_file *seq) +{ + int err; + const char *name; + u32 prog_id; + + err = bpf_get_perf_event_info(event, &prog_id, NULL, &name, NULL, + NULL, NULL); + if (err) + return; + + seq_printf(seq, + "tp_name:\t%s\n" + "event_type:\t%s\n" + "cookie:\t%llu\n", + name, "tracepoint", event->bpf_cookie); +} + +static void bpf_probe_link_show_fdinfo(const struct perf_event *event, + struct seq_file *seq) +{ +#ifdef CONFIG_KPROBE_EVENTS + if (event->tp_event->flags & TRACE_EVENT_FL_KPROBE) + return bpf_perf_link_fdinfo_kprobe(event, seq); +#endif + +#ifdef CONFIG_UPROBE_EVENTS + if (event->tp_event->flags & TRACE_EVENT_FL_UPROBE) + return bpf_perf_link_fdinfo_uprobe(event, seq); +#endif +} + +static void bpf_perf_link_show_fdinfo(const struct bpf_link *link, + struct seq_file *seq) +{ + struct bpf_perf_link *perf_link; + const struct perf_event *event; + + perf_link = container_of(link, struct bpf_perf_link, link); + event = perf_get_event(perf_link->perf_file); + if (IS_ERR(event)) + return; + + switch (event->prog->type) { + case BPF_PROG_TYPE_PERF_EVENT: + return bpf_perf_event_link_show_fdinfo(event, seq); + case BPF_PROG_TYPE_TRACEPOINT: + return bpf_tracepoint_link_show_fdinfo(event, seq); + case BPF_PROG_TYPE_KPROBE: + return bpf_probe_link_show_fdinfo(event, seq); + default: + return; + } +} + static const struct bpf_link_ops bpf_perf_link_lops = { .release = bpf_perf_link_release, .dealloc = bpf_perf_link_dealloc, .fill_link_info = bpf_perf_link_fill_link_info, + .show_fdinfo = bpf_perf_link_show_fdinfo, }; static int bpf_perf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) @@ -4185,6 +4311,25 @@ static int bpf_prog_attach_check_attach_type(const struct bpf_prog *prog, } } +static bool is_cgroup_prog_type(enum bpf_prog_type ptype, enum bpf_attach_type atype, + bool check_atype) +{ + switch (ptype) { + case BPF_PROG_TYPE_CGROUP_DEVICE: + case BPF_PROG_TYPE_CGROUP_SKB: + case BPF_PROG_TYPE_CGROUP_SOCK: + case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: + case BPF_PROG_TYPE_CGROUP_SOCKOPT: + case BPF_PROG_TYPE_CGROUP_SYSCTL: + case BPF_PROG_TYPE_SOCK_OPS: + return true; + case BPF_PROG_TYPE_LSM: + return check_atype ? atype == BPF_LSM_CGROUP : true; + default: + return false; + } +} + #define BPF_PROG_ATTACH_LAST_FIELD expected_revision #define BPF_F_ATTACH_MASK_BASE \ @@ -4215,6 +4360,9 @@ static int bpf_prog_attach(const union bpf_attr *attr) if (bpf_mprog_supported(ptype)) { if (attr->attach_flags & ~BPF_F_ATTACH_MASK_MPROG) return -EINVAL; + } else if (is_cgroup_prog_type(ptype, 0, false)) { + if (attr->attach_flags & ~(BPF_F_ATTACH_MASK_BASE | BPF_F_ATTACH_MASK_MPROG)) + return -EINVAL; } else { if (attr->attach_flags & ~BPF_F_ATTACH_MASK_BASE) return -EINVAL; @@ -4232,6 +4380,11 @@ static int bpf_prog_attach(const union bpf_attr *attr) return -EINVAL; } + if (is_cgroup_prog_type(ptype, prog->expected_attach_type, true)) { + ret = cgroup_bpf_prog_attach(attr, ptype, prog); + goto out; + } + switch (ptype) { case BPF_PROG_TYPE_SK_SKB: case BPF_PROG_TYPE_SK_MSG: @@ -4243,20 +4396,6 @@ static int bpf_prog_attach(const union bpf_attr *attr) case BPF_PROG_TYPE_FLOW_DISSECTOR: ret = netns_bpf_prog_attach(attr, prog); break; - case BPF_PROG_TYPE_CGROUP_DEVICE: - case BPF_PROG_TYPE_CGROUP_SKB: - case BPF_PROG_TYPE_CGROUP_SOCK: - case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: - case BPF_PROG_TYPE_CGROUP_SOCKOPT: - case BPF_PROG_TYPE_CGROUP_SYSCTL: - case BPF_PROG_TYPE_SOCK_OPS: - case BPF_PROG_TYPE_LSM: - if (ptype == BPF_PROG_TYPE_LSM && - prog->expected_attach_type != BPF_LSM_CGROUP) - ret = -EINVAL; - else - ret = cgroup_bpf_prog_attach(attr, ptype, prog); - break; case BPF_PROG_TYPE_SCHED_CLS: if (attr->attach_type == BPF_TCX_INGRESS || attr->attach_type == BPF_TCX_EGRESS) @@ -4267,7 +4406,7 @@ static int bpf_prog_attach(const union bpf_attr *attr) default: ret = -EINVAL; } - +out: if (ret) bpf_prog_put(prog); return ret; @@ -4295,6 +4434,9 @@ static int bpf_prog_detach(const union bpf_attr *attr) if (IS_ERR(prog)) return PTR_ERR(prog); } + } else if (is_cgroup_prog_type(ptype, 0, false)) { + if (attr->attach_flags || attr->relative_fd) + return -EINVAL; } else if (attr->attach_flags || attr->relative_fd || attr->expected_revision) { diff --git a/kernel/bpf/tnum.c b/kernel/bpf/tnum.c index 9dbc31b25e3d..fa353c5d550f 100644 --- a/kernel/bpf/tnum.c +++ b/kernel/bpf/tnum.c @@ -83,6 +83,11 @@ struct tnum tnum_sub(struct tnum a, struct tnum b) return TNUM(dv & ~mu, mu); } +struct tnum tnum_neg(struct tnum a) +{ + return tnum_sub(TNUM(0, 0), a); +} + struct tnum tnum_and(struct tnum a, struct tnum b) { u64 alpha, beta, v; diff --git a/kernel/bpf/trampoline.c b/kernel/bpf/trampoline.c index c4b1a98ff726..b1e358c16eeb 100644 --- a/kernel/bpf/trampoline.c +++ b/kernel/bpf/trampoline.c @@ -911,27 +911,32 @@ static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog, struct bpf_tram return bpf_prog_start_time(); } -static void notrace update_prog_stats(struct bpf_prog *prog, - u64 start) +static void notrace __update_prog_stats(struct bpf_prog *prog, u64 start) { struct bpf_prog_stats *stats; + unsigned long flags; + u64 duration; - if (static_branch_unlikely(&bpf_stats_enabled_key) && - /* static_key could be enabled in __bpf_prog_enter* - * and disabled in __bpf_prog_exit*. - * And vice versa. - * Hence check that 'start' is valid. - */ - start > NO_START_TIME) { - u64 duration = sched_clock() - start; - unsigned long flags; - - stats = this_cpu_ptr(prog->stats); - flags = u64_stats_update_begin_irqsave(&stats->syncp); - u64_stats_inc(&stats->cnt); - u64_stats_add(&stats->nsecs, duration); - u64_stats_update_end_irqrestore(&stats->syncp, flags); - } + /* + * static_key could be enabled in __bpf_prog_enter* and disabled in + * __bpf_prog_exit*. And vice versa. Check that 'start' is valid. + */ + if (start <= NO_START_TIME) + return; + + duration = sched_clock() - start; + stats = this_cpu_ptr(prog->stats); + flags = u64_stats_update_begin_irqsave(&stats->syncp); + u64_stats_inc(&stats->cnt); + u64_stats_add(&stats->nsecs, duration); + u64_stats_update_end_irqrestore(&stats->syncp, flags); +} + +static __always_inline void notrace update_prog_stats(struct bpf_prog *prog, + u64 start) +{ + if (static_branch_unlikely(&bpf_stats_enabled_key)) + __update_prog_stats(prog, start); } static void notrace __bpf_prog_exit_recur(struct bpf_prog *prog, u64 start, diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index 169845710c7e..dd670ba41667 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -44,6 +44,11 @@ static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { #undef BPF_LINK_TYPE }; +enum bpf_features { + BPF_FEAT_RDONLY_CAST_TO_VOID = 0, + __MAX_BPF_FEAT, +}; + struct bpf_mem_alloc bpf_global_percpu_ma; static bool bpf_global_percpu_ma_set; @@ -405,7 +410,8 @@ static bool reg_not_null(const struct bpf_reg_state *reg) type == PTR_TO_MAP_KEY || type == PTR_TO_SOCK_COMMON || (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || - type == PTR_TO_MEM; + type == PTR_TO_MEM || + type == CONST_PTR_TO_MAP; } static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) @@ -1403,7 +1409,7 @@ static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) goto out; alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); - new_arr = krealloc(arr, alloc_size, GFP_KERNEL); + new_arr = krealloc(arr, alloc_size, GFP_KERNEL_ACCOUNT); if (!new_arr) { kfree(arr); return NULL; @@ -1420,7 +1426,7 @@ out: static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src) { dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, - sizeof(struct bpf_reference_state), GFP_KERNEL); + sizeof(struct bpf_reference_state), GFP_KERNEL_ACCOUNT); if (!dst->refs) return -ENOMEM; @@ -1439,7 +1445,7 @@ static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_st size_t n = src->allocated_stack / BPF_REG_SIZE; dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), - GFP_KERNEL); + GFP_KERNEL_ACCOUNT); if (!dst->stack) return -ENOMEM; @@ -1647,7 +1653,7 @@ static void update_peak_states(struct bpf_verifier_env *env) { u32 cur_states; - cur_states = env->explored_states_size + env->free_list_size; + cur_states = env->explored_states_size + env->free_list_size + env->num_backedges; env->peak_states = max(env->peak_states, cur_states); } @@ -1659,6 +1665,13 @@ static void free_func_state(struct bpf_func_state *state) kfree(state); } +static void clear_jmp_history(struct bpf_verifier_state *state) +{ + kfree(state->jmp_history); + state->jmp_history = NULL; + state->jmp_history_cnt = 0; +} + static void free_verifier_state(struct bpf_verifier_state *state, bool free_self) { @@ -1669,11 +1682,12 @@ static void free_verifier_state(struct bpf_verifier_state *state, state->frame[i] = NULL; } kfree(state->refs); + clear_jmp_history(state); if (free_self) kfree(state); } -/* struct bpf_verifier_state->{parent,loop_entry} refer to states +/* struct bpf_verifier_state->parent refers to states * that are in either of env->{expored_states,free_list}. * In both cases the state is contained in struct bpf_verifier_state_list. */ @@ -1684,37 +1698,24 @@ static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_ return NULL; } -static struct bpf_verifier_state_list *state_loop_entry_as_list(struct bpf_verifier_state *st) -{ - if (st->loop_entry) - return container_of(st->loop_entry, struct bpf_verifier_state_list, state); - return NULL; -} +static bool incomplete_read_marks(struct bpf_verifier_env *env, + struct bpf_verifier_state *st); /* A state can be freed if it is no longer referenced: * - is in the env->free_list; * - has no children states; - * - is not used as loop_entry. - * - * Freeing a state can make it's loop_entry free-able. */ static void maybe_free_verifier_state(struct bpf_verifier_env *env, struct bpf_verifier_state_list *sl) { - struct bpf_verifier_state_list *loop_entry_sl; - - while (sl && sl->in_free_list && - sl->state.branches == 0 && - sl->state.used_as_loop_entry == 0) { - loop_entry_sl = state_loop_entry_as_list(&sl->state); - if (loop_entry_sl) - loop_entry_sl->state.used_as_loop_entry--; - list_del(&sl->node); - free_verifier_state(&sl->state, false); - kfree(sl); - env->free_list_size--; - sl = loop_entry_sl; - } + if (!sl->in_free_list + || sl->state.branches != 0 + || incomplete_read_marks(env, &sl->state)) + return; + list_del(&sl->node); + free_verifier_state(&sl->state, false); + kfree(sl); + env->free_list_size--; } /* copy verifier state from src to dst growing dst stack space @@ -1733,6 +1734,13 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state, struct bpf_func_state *dst; int i, err; + dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, + src->jmp_history_cnt, sizeof(*dst_state->jmp_history), + GFP_KERNEL_ACCOUNT); + if (!dst_state->jmp_history) + return -ENOMEM; + dst_state->jmp_history_cnt = src->jmp_history_cnt; + /* if dst has more stack frames then src frame, free them, this is also * necessary in case of exceptional exits using bpf_throw. */ @@ -1750,17 +1758,14 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state, dst_state->parent = src->parent; dst_state->first_insn_idx = src->first_insn_idx; dst_state->last_insn_idx = src->last_insn_idx; - dst_state->insn_hist_start = src->insn_hist_start; - dst_state->insn_hist_end = src->insn_hist_end; dst_state->dfs_depth = src->dfs_depth; dst_state->callback_unroll_depth = src->callback_unroll_depth; - dst_state->used_as_loop_entry = src->used_as_loop_entry; dst_state->may_goto_depth = src->may_goto_depth; - dst_state->loop_entry = src->loop_entry; + dst_state->equal_state = src->equal_state; for (i = 0; i <= src->curframe; i++) { dst = dst_state->frame[i]; if (!dst) { - dst = kzalloc(sizeof(*dst), GFP_KERNEL); + dst = kzalloc(sizeof(*dst), GFP_KERNEL_ACCOUNT); if (!dst) return -ENOMEM; dst_state->frame[i] = dst; @@ -1799,173 +1804,232 @@ static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_sta return true; } -/* Open coded iterators allow back-edges in the state graph in order to - * check unbounded loops that iterators. - * - * In is_state_visited() it is necessary to know if explored states are - * part of some loops in order to decide whether non-exact states - * comparison could be used: - * - non-exact states comparison establishes sub-state relation and uses - * read and precision marks to do so, these marks are propagated from - * children states and thus are not guaranteed to be final in a loop; - * - exact states comparison just checks if current and explored states - * are identical (and thus form a back-edge). - * - * Paper "A New Algorithm for Identifying Loops in Decompilation" - * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient - * algorithm for loop structure detection and gives an overview of - * relevant terminology. It also has helpful illustrations. - * - * [1] https://api.semanticscholar.org/CorpusID:15784067 - * - * We use a similar algorithm but because loop nested structure is - * irrelevant for verifier ours is significantly simpler and resembles - * strongly connected components algorithm from Sedgewick's textbook. - * - * Define topmost loop entry as a first node of the loop traversed in a - * depth first search starting from initial state. The goal of the loop - * tracking algorithm is to associate topmost loop entries with states - * derived from these entries. - * - * For each step in the DFS states traversal algorithm needs to identify - * the following situations: - * - * initial initial initial - * | | | - * V V V - * ... ... .---------> hdr - * | | | | - * V V | V - * cur .-> succ | .------... - * | | | | | | - * V | V | V V - * succ '-- cur | ... ... - * | | | - * | V V - * | succ <- cur - * | | - * | V - * | ... - * | | - * '----' - * - * (A) successor state of cur (B) successor state of cur or it's entry - * not yet traversed are in current DFS path, thus cur and succ - * are members of the same outermost loop - * - * initial initial - * | | - * V V - * ... ... - * | | - * V V - * .------... .------... - * | | | | - * V V V V - * .-> hdr ... ... ... - * | | | | | - * | V V V V - * | succ <- cur succ <- cur - * | | | - * | V V - * | ... ... - * | | | - * '----' exit - * - * (C) successor state of cur is a part of some loop but this loop - * does not include cur or successor state is not in a loop at all. - * - * Algorithm could be described as the following python code: - * - * traversed = set() # Set of traversed nodes - * entries = {} # Mapping from node to loop entry - * depths = {} # Depth level assigned to graph node - * path = set() # Current DFS path - * - * # Find outermost loop entry known for n - * def get_loop_entry(n): - * h = entries.get(n, None) - * while h in entries: - * h = entries[h] - * return h - * - * # Update n's loop entry if h comes before n in current DFS path. - * def update_loop_entry(n, h): - * if h in path and depths[entries.get(n, n)] < depths[n]: - * entries[n] = h1 +/* Return IP for a given frame in a call stack */ +static u32 frame_insn_idx(struct bpf_verifier_state *st, u32 frame) +{ + return frame == st->curframe + ? st->insn_idx + : st->frame[frame + 1]->callsite; +} + +/* For state @st look for a topmost frame with frame_insn_idx() in some SCC, + * if such frame exists form a corresponding @callchain as an array of + * call sites leading to this frame and SCC id. + * E.g.: * - * def dfs(n, depth): - * traversed.add(n) - * path.add(n) - * depths[n] = depth - * for succ in G.successors(n): - * if succ not in traversed: - * # Case A: explore succ and update cur's loop entry - * # only if succ's entry is in current DFS path. - * dfs(succ, depth + 1) - * h = entries.get(succ, None) - * update_loop_entry(n, h) - * else: - * # Case B or C depending on `h1 in path` check in update_loop_entry(). - * update_loop_entry(n, succ) - * path.remove(n) + * void foo() { A: loop {... SCC#1 ...}; } + * void bar() { B: loop { C: foo(); ... SCC#2 ... } + * D: loop { E: foo(); ... SCC#3 ... } } + * void main() { F: bar(); } * - * To adapt this algorithm for use with verifier: - * - use st->branch == 0 as a signal that DFS of succ had been finished - * and cur's loop entry has to be updated (case A), handle this in - * update_branch_counts(); - * - use st->branch > 0 as a signal that st is in the current DFS path; - * - handle cases B and C in is_state_visited(). + * @callchain at (A) would be either (F,SCC#2) or (F,SCC#3) depending + * on @st frame call sites being (F,C,A) or (F,E,A). */ -static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_env *env, - struct bpf_verifier_state *st) +static bool compute_scc_callchain(struct bpf_verifier_env *env, + struct bpf_verifier_state *st, + struct bpf_scc_callchain *callchain) { - struct bpf_verifier_state *topmost = st->loop_entry; - u32 steps = 0; + u32 i, scc, insn_idx; - while (topmost && topmost->loop_entry) { - if (verifier_bug_if(steps++ > st->dfs_depth, env, "infinite loop")) - return ERR_PTR(-EFAULT); - topmost = topmost->loop_entry; + memset(callchain, 0, sizeof(*callchain)); + for (i = 0; i <= st->curframe; i++) { + insn_idx = frame_insn_idx(st, i); + scc = env->insn_aux_data[insn_idx].scc; + if (scc) { + callchain->scc = scc; + break; + } else if (i < st->curframe) { + callchain->callsites[i] = insn_idx; + } else { + return false; + } } - return topmost; + return true; } -static void update_loop_entry(struct bpf_verifier_env *env, - struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) +/* Check if bpf_scc_visit instance for @callchain exists. */ +static struct bpf_scc_visit *scc_visit_lookup(struct bpf_verifier_env *env, + struct bpf_scc_callchain *callchain) { - /* The hdr->branches check decides between cases B and C in - * comment for get_loop_entry(). If hdr->branches == 0 then - * head's topmost loop entry is not in current DFS path, - * hence 'cur' and 'hdr' are not in the same loop and there is - * no need to update cur->loop_entry. - */ - if (hdr->branches && hdr->dfs_depth < (cur->loop_entry ?: cur)->dfs_depth) { - if (cur->loop_entry) { - cur->loop_entry->used_as_loop_entry--; - maybe_free_verifier_state(env, state_loop_entry_as_list(cur)); - } - cur->loop_entry = hdr; - hdr->used_as_loop_entry++; + struct bpf_scc_info *info = env->scc_info[callchain->scc]; + struct bpf_scc_visit *visits = info->visits; + u32 i; + + if (!info) + return NULL; + for (i = 0; i < info->num_visits; i++) + if (memcmp(callchain, &visits[i].callchain, sizeof(*callchain)) == 0) + return &visits[i]; + return NULL; +} + +/* Allocate a new bpf_scc_visit instance corresponding to @callchain. + * Allocated instances are alive for a duration of the do_check_common() + * call and are freed by free_states(). + */ +static struct bpf_scc_visit *scc_visit_alloc(struct bpf_verifier_env *env, + struct bpf_scc_callchain *callchain) +{ + struct bpf_scc_visit *visit; + struct bpf_scc_info *info; + u32 scc, num_visits; + u64 new_sz; + + scc = callchain->scc; + info = env->scc_info[scc]; + num_visits = info ? info->num_visits : 0; + new_sz = sizeof(*info) + sizeof(struct bpf_scc_visit) * (num_visits + 1); + info = kvrealloc(env->scc_info[scc], new_sz, GFP_KERNEL_ACCOUNT); + if (!info) + return NULL; + env->scc_info[scc] = info; + info->num_visits = num_visits + 1; + visit = &info->visits[num_visits]; + memset(visit, 0, sizeof(*visit)); + memcpy(&visit->callchain, callchain, sizeof(*callchain)); + return visit; +} + +/* Form a string '(callsite#1,callsite#2,...,scc)' in env->tmp_str_buf */ +static char *format_callchain(struct bpf_verifier_env *env, struct bpf_scc_callchain *callchain) +{ + char *buf = env->tmp_str_buf; + int i, delta = 0; + + delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "("); + for (i = 0; i < ARRAY_SIZE(callchain->callsites); i++) { + if (!callchain->callsites[i]) + break; + delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u,", + callchain->callsites[i]); + } + delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u)", callchain->scc); + return env->tmp_str_buf; +} + +/* If callchain for @st exists (@st is in some SCC), ensure that + * bpf_scc_visit instance for this callchain exists. + * If instance does not exist or is empty, assign visit->entry_state to @st. + */ +static int maybe_enter_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) +{ + struct bpf_scc_callchain callchain; + struct bpf_scc_visit *visit; + + if (!compute_scc_callchain(env, st, &callchain)) + return 0; + visit = scc_visit_lookup(env, &callchain); + visit = visit ?: scc_visit_alloc(env, &callchain); + if (!visit) + return -ENOMEM; + if (!visit->entry_state) { + visit->entry_state = st; + if (env->log.level & BPF_LOG_LEVEL2) + verbose(env, "SCC enter %s\n", format_callchain(env, &callchain)); + } + return 0; +} + +static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit); + +/* If callchain for @st exists (@st is in some SCC), make it empty: + * - set visit->entry_state to NULL; + * - flush accumulated backedges. + */ +static int maybe_exit_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) +{ + struct bpf_scc_callchain callchain; + struct bpf_scc_visit *visit; + + if (!compute_scc_callchain(env, st, &callchain)) + return 0; + visit = scc_visit_lookup(env, &callchain); + if (!visit) { + verifier_bug(env, "scc exit: no visit info for call chain %s", + format_callchain(env, &callchain)); + return -EFAULT; + } + if (visit->entry_state != st) + return 0; + if (env->log.level & BPF_LOG_LEVEL2) + verbose(env, "SCC exit %s\n", format_callchain(env, &callchain)); + visit->entry_state = NULL; + env->num_backedges -= visit->num_backedges; + visit->num_backedges = 0; + update_peak_states(env); + return propagate_backedges(env, visit); +} + +/* Lookup an bpf_scc_visit instance corresponding to @st callchain + * and add @backedge to visit->backedges. @st callchain must exist. + */ +static int add_scc_backedge(struct bpf_verifier_env *env, + struct bpf_verifier_state *st, + struct bpf_scc_backedge *backedge) +{ + struct bpf_scc_callchain callchain; + struct bpf_scc_visit *visit; + + if (!compute_scc_callchain(env, st, &callchain)) { + verifier_bug(env, "add backedge: no SCC in verification path, insn_idx %d", + st->insn_idx); + return -EFAULT; + } + visit = scc_visit_lookup(env, &callchain); + if (!visit) { + verifier_bug(env, "add backedge: no visit info for call chain %s", + format_callchain(env, &callchain)); + return -EFAULT; + } + if (env->log.level & BPF_LOG_LEVEL2) + verbose(env, "SCC backedge %s\n", format_callchain(env, &callchain)); + backedge->next = visit->backedges; + visit->backedges = backedge; + visit->num_backedges++; + env->num_backedges++; + update_peak_states(env); + return 0; +} + +/* bpf_reg_state->live marks for registers in a state @st are incomplete, + * if state @st is in some SCC and not all execution paths starting at this + * SCC are fully explored. + */ +static bool incomplete_read_marks(struct bpf_verifier_env *env, + struct bpf_verifier_state *st) +{ + struct bpf_scc_callchain callchain; + struct bpf_scc_visit *visit; + + if (!compute_scc_callchain(env, st, &callchain)) + return false; + visit = scc_visit_lookup(env, &callchain); + if (!visit) + return false; + return !!visit->backedges; +} + +static void free_backedges(struct bpf_scc_visit *visit) +{ + struct bpf_scc_backedge *backedge, *next; + + for (backedge = visit->backedges; backedge; backedge = next) { + free_verifier_state(&backedge->state, false); + next = backedge->next; + kvfree(backedge); } + visit->backedges = NULL; } -static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) +static int update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) { struct bpf_verifier_state_list *sl = NULL, *parent_sl; struct bpf_verifier_state *parent; + int err; while (st) { u32 br = --st->branches; - /* br == 0 signals that DFS exploration for 'st' is finished, - * thus it is necessary to update parent's loop entry if it - * turned out that st is a part of some loop. - * This is a part of 'case A' in get_loop_entry() comment. - */ - if (br == 0 && st->parent && st->loop_entry) - update_loop_entry(env, st->parent, st->loop_entry); - /* WARN_ON(br > 1) technically makes sense here, * but see comment in push_stack(), hence: */ @@ -1974,6 +2038,9 @@ static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifi br); if (br) break; + err = maybe_exit_scc(env, st); + if (err) + return err; parent = st->parent; parent_sl = state_parent_as_list(st); if (sl) @@ -1981,6 +2048,7 @@ static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifi st = parent; sl = parent_sl; } + return 0; } static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, @@ -2012,6 +2080,18 @@ static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, return 0; } +static bool error_recoverable_with_nospec(int err) +{ + /* Should only return true for non-fatal errors that are allowed to + * occur during speculative verification. For these we can insert a + * nospec and the program might still be accepted. Do not include + * something like ENOMEM because it is likely to re-occur for the next + * architectural path once it has been recovered-from in all speculative + * paths. + */ + return err == -EPERM || err == -EACCES || err == -EINVAL; +} + static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, int insn_idx, int prev_insn_idx, bool speculative) @@ -2020,9 +2100,9 @@ static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, struct bpf_verifier_stack_elem *elem; int err; - elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); + elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); if (!elem) - goto err; + return NULL; elem->insn_idx = insn_idx; elem->prev_insn_idx = prev_insn_idx; @@ -2032,12 +2112,12 @@ static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, env->stack_size++; err = copy_verifier_state(&elem->st, cur); if (err) - goto err; + return NULL; elem->st.speculative |= speculative; if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { verbose(env, "The sequence of %d jumps is too complex.\n", env->stack_size); - goto err; + return NULL; } if (elem->st.parent) { ++elem->st.parent->branches; @@ -2052,12 +2132,6 @@ static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, */ } return &elem->st; -err: - free_verifier_state(env->cur_state, true); - env->cur_state = NULL; - /* pop all elements and return */ - while (!pop_stack(env, NULL, NULL, false)); - return NULL; } #define CALLER_SAVED_REGS 6 @@ -2787,9 +2861,9 @@ static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, struct bpf_verifier_stack_elem *elem; struct bpf_func_state *frame; - elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); + elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); if (!elem) - goto err; + return NULL; elem->insn_idx = insn_idx; elem->prev_insn_idx = prev_insn_idx; @@ -2801,35 +2875,24 @@ static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, verbose(env, "The sequence of %d jumps is too complex for async cb.\n", env->stack_size); - goto err; + return NULL; } /* Unlike push_stack() do not copy_verifier_state(). * The caller state doesn't matter. * This is async callback. It starts in a fresh stack. * Initialize it similar to do_check_common(). - * But we do need to make sure to not clobber insn_hist, so we keep - * chaining insn_hist_start/insn_hist_end indices as for a normal - * child state. */ elem->st.branches = 1; elem->st.in_sleepable = is_sleepable; - elem->st.insn_hist_start = env->cur_state->insn_hist_end; - elem->st.insn_hist_end = elem->st.insn_hist_start; - frame = kzalloc(sizeof(*frame), GFP_KERNEL); + frame = kzalloc(sizeof(*frame), GFP_KERNEL_ACCOUNT); if (!frame) - goto err; + return NULL; init_func_state(env, frame, BPF_MAIN_FUNC /* callsite */, 0 /* frameno within this callchain */, subprog /* subprog number within this prog */); elem->st.frame[0] = frame; return &elem->st; -err: - free_verifier_state(env->cur_state, true); - env->cur_state = NULL; - /* pop all elements and return */ - while (!pop_stack(env, NULL, NULL, false)); - return NULL; } @@ -3167,7 +3230,7 @@ static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) return -EINVAL; } - tab = kzalloc(sizeof(*tab), GFP_KERNEL); + tab = kzalloc(sizeof(*tab), GFP_KERNEL_ACCOUNT); if (!tab) return -ENOMEM; prog_aux->kfunc_tab = tab; @@ -3183,7 +3246,7 @@ static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) return 0; if (!btf_tab && offset) { - btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); + btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL_ACCOUNT); if (!btf_tab) return -ENOMEM; prog_aux->kfunc_btf_tab = btf_tab; @@ -3843,10 +3906,11 @@ static void linked_regs_unpack(u64 val, struct linked_regs *s) } /* for any branch, call, exit record the history of jmps in the given state */ -static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, - int insn_flags, u64 linked_regs) +static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, + int insn_flags, u64 linked_regs) { - struct bpf_insn_hist_entry *p; + u32 cnt = cur->jmp_history_cnt; + struct bpf_jmp_history_entry *p; size_t alloc_size; /* combine instruction flags if we already recorded this instruction */ @@ -3866,32 +3930,29 @@ static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_s return 0; } - if (cur->insn_hist_end + 1 > env->insn_hist_cap) { - alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p)); - p = kvrealloc(env->insn_hist, alloc_size, GFP_USER); - if (!p) - return -ENOMEM; - env->insn_hist = p; - env->insn_hist_cap = alloc_size / sizeof(*p); - } + cnt++; + alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); + p = krealloc(cur->jmp_history, alloc_size, GFP_KERNEL_ACCOUNT); + if (!p) + return -ENOMEM; + cur->jmp_history = p; - p = &env->insn_hist[cur->insn_hist_end]; + p = &cur->jmp_history[cnt - 1]; p->idx = env->insn_idx; p->prev_idx = env->prev_insn_idx; p->flags = insn_flags; p->linked_regs = linked_regs; - - cur->insn_hist_end++; + cur->jmp_history_cnt = cnt; env->cur_hist_ent = p; return 0; } -static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env, - u32 hist_start, u32 hist_end, int insn_idx) +static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, + u32 hist_end, int insn_idx) { - if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx) - return &env->insn_hist[hist_end - 1]; + if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) + return &st->jmp_history[hist_end - 1]; return NULL; } @@ -3908,26 +3969,25 @@ static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env * * history entry recording a jump from last instruction of parent state and * first instruction of given state. */ -static int get_prev_insn_idx(const struct bpf_verifier_env *env, - struct bpf_verifier_state *st, - int insn_idx, u32 hist_start, u32 *hist_endp) +static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, + u32 *history) { - u32 hist_end = *hist_endp; - u32 cnt = hist_end - hist_start; + u32 cnt = *history; - if (insn_idx == st->first_insn_idx) { + if (i == st->first_insn_idx) { if (cnt == 0) return -ENOENT; - if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx) + if (cnt == 1 && st->jmp_history[0].idx == i) return -ENOENT; } - if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) { - (*hist_endp)--; - return env->insn_hist[hist_end - 1].prev_idx; + if (cnt && st->jmp_history[cnt - 1].idx == i) { + i = st->jmp_history[cnt - 1].prev_idx; + (*history)--; } else { - return insn_idx - 1; + i--; } + return i; } static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) @@ -4108,7 +4168,7 @@ static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) /* If any register R in hist->linked_regs is marked as precise in bt, * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. */ -static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist) +static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist) { struct linked_regs linked_regs; bool some_precise = false; @@ -4153,7 +4213,7 @@ static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); * - *was* processed previously during backtracking. */ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, - struct bpf_insn_hist_entry *hist, struct backtrack_state *bt) + struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) { struct bpf_insn *insn = env->prog->insnsi + idx; u8 class = BPF_CLASS(insn->code); @@ -4571,7 +4631,7 @@ static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_ * SCALARS, as well as any other registers and slots that contribute to * a tracked state of given registers/stack slots, depending on specific BPF * assembly instructions (see backtrack_insns() for exact instruction handling - * logic). This backtracking relies on recorded insn_hist and is able to + * logic). This backtracking relies on recorded jmp_history and is able to * traverse entire chain of parent states. This process ends only when all the * necessary registers/slots and their transitive dependencies are marked as * precise. @@ -4651,23 +4711,27 @@ static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_ * mark_all_scalars_imprecise() to hopefully get more permissive and generic * finalized states which help in short circuiting more future states. */ -static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) +static int __mark_chain_precision(struct bpf_verifier_env *env, + struct bpf_verifier_state *starting_state, + int regno, + bool *changed) { + struct bpf_verifier_state *st = starting_state; struct backtrack_state *bt = &env->bt; - struct bpf_verifier_state *st = env->cur_state; int first_idx = st->first_insn_idx; - int last_idx = env->insn_idx; + int last_idx = starting_state->insn_idx; int subseq_idx = -1; struct bpf_func_state *func; + bool tmp, skip_first = true; struct bpf_reg_state *reg; - bool skip_first = true; int i, fr, err; if (!env->bpf_capable) return 0; + changed = changed ?: &tmp; /* set frame number from which we are starting to backtrack */ - bt_init(bt, env->cur_state->curframe); + bt_init(bt, starting_state->curframe); /* Do sanity checks against current state of register and/or stack * slot, but don't set precise flag in current state, as precision @@ -4688,9 +4752,8 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) for (;;) { DECLARE_BITMAP(mask, 64); - u32 hist_start = st->insn_hist_start; - u32 hist_end = st->insn_hist_end; - struct bpf_insn_hist_entry *hist; + u32 history = st->jmp_history_cnt; + struct bpf_jmp_history_entry *hist; if (env->log.level & BPF_LOG_LEVEL2) { verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", @@ -4712,8 +4775,10 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) for_each_set_bit(i, mask, 32) { reg = &st->frame[0]->regs[i]; bt_clear_reg(bt, i); - if (reg->type == SCALAR_VALUE) + if (reg->type == SCALAR_VALUE) { reg->precise = true; + *changed = true; + } } return 0; } @@ -4728,11 +4793,11 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) err = 0; skip_first = false; } else { - hist = get_insn_hist_entry(env, hist_start, hist_end, i); + hist = get_jmp_hist_entry(st, history, i); err = backtrack_insn(env, i, subseq_idx, hist, bt); } if (err == -ENOTSUPP) { - mark_all_scalars_precise(env, env->cur_state); + mark_all_scalars_precise(env, starting_state); bt_reset(bt); return 0; } else if (err) { @@ -4745,7 +4810,7 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) */ return 0; subseq_idx = i; - i = get_prev_insn_idx(env, st, i, hist_start, &hist_end); + i = get_prev_insn_idx(st, i, &history); if (i == -ENOENT) break; if (i >= env->prog->len) { @@ -4772,10 +4837,12 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) bt_clear_frame_reg(bt, fr, i); continue; } - if (reg->precise) + if (reg->precise) { bt_clear_frame_reg(bt, fr, i); - else + } else { reg->precise = true; + *changed = true; + } } bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); @@ -4790,10 +4857,12 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) continue; } reg = &func->stack[i].spilled_ptr; - if (reg->precise) + if (reg->precise) { bt_clear_frame_slot(bt, fr, i); - else + } else { reg->precise = true; + *changed = true; + } } if (env->log.level & BPF_LOG_LEVEL2) { fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, @@ -4820,7 +4889,7 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) * fallback to marking all precise */ if (!bt_empty(bt)) { - mark_all_scalars_precise(env, env->cur_state); + mark_all_scalars_precise(env, starting_state); bt_reset(bt); } @@ -4829,15 +4898,16 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) int mark_chain_precision(struct bpf_verifier_env *env, int regno) { - return __mark_chain_precision(env, regno); + return __mark_chain_precision(env, env->cur_state, regno, NULL); } /* mark_chain_precision_batch() assumes that env->bt is set in the caller to * desired reg and stack masks across all relevant frames */ -static int mark_chain_precision_batch(struct bpf_verifier_env *env) +static int mark_chain_precision_batch(struct bpf_verifier_env *env, + struct bpf_verifier_state *starting_state) { - return __mark_chain_precision(env, -1); + return __mark_chain_precision(env, starting_state, -1, NULL); } static bool is_spillable_regtype(enum bpf_reg_type type) @@ -5026,7 +5096,7 @@ static int check_stack_write_fixed_off(struct bpf_verifier_env *env, } if (sanitize) - env->insn_aux_data[insn_idx].sanitize_stack_spill = true; + env->insn_aux_data[insn_idx].nospec_result = true; } err = destroy_if_dynptr_stack_slot(env, state, spi); @@ -5109,7 +5179,7 @@ static int check_stack_write_fixed_off(struct bpf_verifier_env *env, } if (insn_flags) - return push_insn_history(env, env->cur_state, insn_flags, 0); + return push_jmp_history(env, env->cur_state, insn_flags, 0); return 0; } @@ -5416,7 +5486,7 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env, insn_flags = 0; /* we are not restoring spilled register */ } if (insn_flags) - return push_insn_history(env, env->cur_state, insn_flags, 0); + return push_jmp_history(env, env->cur_state, insn_flags, 0); return 0; } @@ -7469,6 +7539,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn } } else if (base_type(reg->type) == PTR_TO_MEM) { bool rdonly_mem = type_is_rdonly_mem(reg->type); + bool rdonly_untrusted = rdonly_mem && (reg->type & PTR_UNTRUSTED); if (type_may_be_null(reg->type)) { verbose(env, "R%d invalid mem access '%s'\n", regno, @@ -7488,8 +7559,13 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn return -EACCES; } - err = check_mem_region_access(env, regno, off, size, - reg->mem_size, false); + /* + * Accesses to untrusted PTR_TO_MEM are done through probe + * instructions, hence no need to check bounds in that case. + */ + if (!rdonly_untrusted) + err = check_mem_region_access(env, regno, off, size, + reg->mem_size, false); if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) mark_reg_unknown(env, regs, value_regno); } else if (reg->type == PTR_TO_CTX) { @@ -8953,7 +9029,7 @@ static int resolve_map_arg_type(struct bpf_verifier_env *env, if (!meta->map_ptr) { /* kernel subsystem misconfigured verifier */ verbose(env, "invalid map_ptr to access map->type\n"); - return -EACCES; + return -EFAULT; } switch (meta->map_ptr->map_type) { @@ -9489,7 +9565,7 @@ static int get_constant_map_key(struct bpf_verifier_env *env, * to prevent pruning on it. */ bt_set_frame_slot(&env->bt, key->frameno, spi); - err = mark_chain_precision_batch(env); + err = mark_chain_precision_batch(env, env->cur_state); if (err < 0) return err; @@ -9641,7 +9717,7 @@ skip_type_check: * that kernel subsystem misconfigured verifier */ verbose(env, "invalid map_ptr to access map->key\n"); - return -EACCES; + return -EFAULT; } key_size = meta->map_ptr->key_size; err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL); @@ -9668,7 +9744,7 @@ skip_type_check: if (!meta->map_ptr) { /* kernel subsystem misconfigured verifier */ verbose(env, "invalid map_ptr to access map->value\n"); - return -EACCES; + return -EFAULT; } meta->raw_mode = arg_type & MEM_UNINIT; err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, @@ -10278,7 +10354,7 @@ static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int calls } caller = state->frame[state->curframe]; - callee = kzalloc(sizeof(*callee), GFP_KERNEL); + callee = kzalloc(sizeof(*callee), GFP_KERNEL_ACCOUNT); if (!callee) return -ENOMEM; state->frame[state->curframe + 1] = callee; @@ -10964,7 +11040,7 @@ record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, if (map == NULL) { verbose(env, "kernel subsystem misconfigured verifier\n"); - return -EINVAL; + return -EFAULT; } /* In case of read-only, some additional restrictions @@ -11003,7 +11079,7 @@ record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, return 0; if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { verbose(env, "kernel subsystem misconfigured verifier\n"); - return -EINVAL; + return -EFAULT; } reg = ®s[BPF_REG_3]; @@ -11145,7 +11221,7 @@ static int check_get_func_ip(struct bpf_verifier_env *env) return -ENOTSUPP; } -static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) +static struct bpf_insn_aux_data *cur_aux(const struct bpf_verifier_env *env) { return &env->insn_aux_data[env->insn_idx]; } @@ -11257,7 +11333,7 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", func_id_name(func_id), func_id); - return -EINVAL; + return -EFAULT; } memset(&meta, 0, sizeof(meta)); @@ -11559,7 +11635,7 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn if (meta.map_ptr == NULL) { verbose(env, "kernel subsystem misconfigured verifier\n"); - return -EINVAL; + return -EFAULT; } if (func_id == BPF_FUNC_map_lookup_elem && @@ -11652,7 +11728,7 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn verbose(env, "verifier internal error:"); verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", func_id_name(func_id)); - return -EINVAL; + return -EFAULT; } ret_btf = btf_vmlinux; ret_btf_id = *fn->ret_btf_id; @@ -13536,16 +13612,24 @@ static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_ca regs[BPF_REG_0].btf_id = meta->ret_btf_id; } else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value); - if (!ret_t || !btf_type_is_struct(ret_t)) { + if (!ret_t) { + verbose(env, "Unknown type ID %lld passed to kfunc bpf_rdonly_cast\n", + meta->arg_constant.value); + return -EINVAL; + } else if (btf_type_is_struct(ret_t)) { + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; + regs[BPF_REG_0].btf = desc_btf; + regs[BPF_REG_0].btf_id = meta->arg_constant.value; + } else if (btf_type_is_void(ret_t)) { + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED; + regs[BPF_REG_0].mem_size = 0; + } else { verbose(env, - "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); + "kfunc bpf_rdonly_cast type ID argument must be of a struct or void\n"); return -EINVAL; } - - mark_reg_known_zero(env, regs, BPF_REG_0); - regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; - regs[BPF_REG_0].btf = desc_btf; - regs[BPF_REG_0].btf_id = meta->arg_constant.value; } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] || meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type); @@ -14013,7 +14097,9 @@ static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, const struct bpf_insn *insn) { - return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; + return env->bypass_spec_v1 || + BPF_SRC(insn->code) == BPF_K || + cur_aux(env)->nospec; } static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, @@ -14213,7 +14299,7 @@ static int sanitize_err(struct bpf_verifier_env *env, case REASON_STACK: verbose(env, "R%d could not be pushed for speculative verification, %s\n", dst, err); - break; + return -ENOMEM; default: verbose(env, "verifier internal error: unknown reason (%d)\n", reason); @@ -14283,7 +14369,7 @@ static int sanitize_check_bounds(struct bpf_verifier_env *env, } break; default: - break; + return -EOPNOTSUPP; } return 0; @@ -14310,7 +14396,7 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, struct bpf_sanitize_info info = {}; u8 opcode = BPF_OP(insn->code); u32 dst = insn->dst_reg; - int ret; + int ret, bounds_ret; dst_reg = ®s[dst]; @@ -14342,6 +14428,13 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, return -EACCES; } + /* + * Accesses to untrusted PTR_TO_MEM are done through probe + * instructions, hence no need to track offsets. + */ + if (base_type(ptr_reg->type) == PTR_TO_MEM && (ptr_reg->type & PTR_UNTRUSTED)) + return 0; + switch (base_type(ptr_reg->type)) { case PTR_TO_CTX: case PTR_TO_MAP_VALUE: @@ -14510,11 +14603,19 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) return -EINVAL; reg_bounds_sync(dst_reg); - if (sanitize_check_bounds(env, insn, dst_reg) < 0) - return -EACCES; + bounds_ret = sanitize_check_bounds(env, insn, dst_reg); + if (bounds_ret == -EACCES) + return bounds_ret; if (sanitize_needed(opcode)) { ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, &info, true); + if (verifier_bug_if(!can_skip_alu_sanitation(env, insn) + && !env->cur_state->speculative + && bounds_ret + && !ret, + env, "Pointer type unsupported by sanitize_check_bounds() not rejected by retrieve_ptr_limit() as required")) { + return -EFAULT; + } if (ret < 0) return sanitize_err(env, insn, ret, off_reg, dst_reg); } @@ -14529,14 +14630,25 @@ static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, s32 *dst_smax = &dst_reg->s32_max_value; u32 *dst_umin = &dst_reg->u32_min_value; u32 *dst_umax = &dst_reg->u32_max_value; + u32 umin_val = src_reg->u32_min_value; + u32 umax_val = src_reg->u32_max_value; + bool min_overflow, max_overflow; if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { *dst_smin = S32_MIN; *dst_smax = S32_MAX; } - if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) || - check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) { + + /* If either all additions overflow or no additions overflow, then + * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = + * dst_umax + src_umax. Otherwise (some additions overflow), set + * the output bounds to unbounded. + */ + min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); + max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); + + if (!min_overflow && max_overflow) { *dst_umin = 0; *dst_umax = U32_MAX; } @@ -14549,14 +14661,25 @@ static void scalar_min_max_add(struct bpf_reg_state *dst_reg, s64 *dst_smax = &dst_reg->smax_value; u64 *dst_umin = &dst_reg->umin_value; u64 *dst_umax = &dst_reg->umax_value; + u64 umin_val = src_reg->umin_value; + u64 umax_val = src_reg->umax_value; + bool min_overflow, max_overflow; if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { *dst_smin = S64_MIN; *dst_smax = S64_MAX; } - if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) || - check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) { + + /* If either all additions overflow or no additions overflow, then + * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = + * dst_umax + src_umax. Otherwise (some additions overflow), set + * the output bounds to unbounded. + */ + min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); + max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); + + if (!min_overflow && max_overflow) { *dst_umin = 0; *dst_umax = U64_MAX; } @@ -14567,8 +14690,11 @@ static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, { s32 *dst_smin = &dst_reg->s32_min_value; s32 *dst_smax = &dst_reg->s32_max_value; + u32 *dst_umin = &dst_reg->u32_min_value; + u32 *dst_umax = &dst_reg->u32_max_value; u32 umin_val = src_reg->u32_min_value; u32 umax_val = src_reg->u32_max_value; + bool min_underflow, max_underflow; if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { @@ -14576,14 +14702,18 @@ static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, *dst_smin = S32_MIN; *dst_smax = S32_MAX; } - if (dst_reg->u32_min_value < umax_val) { - /* Overflow possible, we know nothing */ - dst_reg->u32_min_value = 0; - dst_reg->u32_max_value = U32_MAX; - } else { - /* Cannot overflow (as long as bounds are consistent) */ - dst_reg->u32_min_value -= umax_val; - dst_reg->u32_max_value -= umin_val; + + /* If either all subtractions underflow or no subtractions + * underflow, it is okay to set: dst_umin = dst_umin - src_umax, + * dst_umax = dst_umax - src_umin. Otherwise (some subtractions + * underflow), set the output bounds to unbounded. + */ + min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); + max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); + + if (min_underflow && !max_underflow) { + *dst_umin = 0; + *dst_umax = U32_MAX; } } @@ -14592,8 +14722,11 @@ static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, { s64 *dst_smin = &dst_reg->smin_value; s64 *dst_smax = &dst_reg->smax_value; + u64 *dst_umin = &dst_reg->umin_value; + u64 *dst_umax = &dst_reg->umax_value; u64 umin_val = src_reg->umin_value; u64 umax_val = src_reg->umax_value; + bool min_underflow, max_underflow; if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { @@ -14601,14 +14734,18 @@ static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, *dst_smin = S64_MIN; *dst_smax = S64_MAX; } - if (dst_reg->umin_value < umax_val) { - /* Overflow possible, we know nothing */ - dst_reg->umin_value = 0; - dst_reg->umax_value = U64_MAX; - } else { - /* Cannot overflow (as long as bounds are consistent) */ - dst_reg->umin_value -= umax_val; - dst_reg->umax_value -= umin_val; + + /* If either all subtractions underflow or no subtractions + * underflow, it is okay to set: dst_umin = dst_umin - src_umax, + * dst_umax = dst_umax - src_umin. Otherwise (some subtractions + * underflow), set the output bounds to unbounded. + */ + min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); + max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); + + if (min_underflow && !max_underflow) { + *dst_umin = 0; + *dst_umax = U64_MAX; } } @@ -15070,6 +15207,7 @@ static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, switch (BPF_OP(insn->code)) { case BPF_ADD: case BPF_SUB: + case BPF_NEG: case BPF_AND: case BPF_XOR: case BPF_OR: @@ -15138,6 +15276,13 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, scalar_min_max_sub(dst_reg, &src_reg); dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); break; + case BPF_NEG: + env->fake_reg[0] = *dst_reg; + __mark_reg_known(dst_reg, 0); + scalar32_min_max_sub(dst_reg, &env->fake_reg[0]); + scalar_min_max_sub(dst_reg, &env->fake_reg[0]); + dst_reg->var_off = tnum_neg(env->fake_reg[0].var_off); + break; case BPF_MUL: dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); scalar32_min_max_mul(dst_reg, &src_reg); @@ -15277,12 +15422,12 @@ static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, if (WARN_ON_ONCE(ptr_reg)) { print_verifier_state(env, vstate, vstate->curframe, true); verbose(env, "verifier internal error: unexpected ptr_reg\n"); - return -EINVAL; + return -EFAULT; } if (WARN_ON(!src_reg)) { print_verifier_state(env, vstate, vstate->curframe, true); verbose(env, "verifier internal error: no src_reg\n"); - return -EINVAL; + return -EFAULT; } err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); if (err) @@ -15361,7 +15506,14 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) } /* check dest operand */ - err = check_reg_arg(env, insn->dst_reg, DST_OP); + if (opcode == BPF_NEG) { + err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); + err = err ?: adjust_scalar_min_max_vals(env, insn, + ®s[insn->dst_reg], + regs[insn->dst_reg]); + } else { + err = check_reg_arg(env, insn->dst_reg, DST_OP); + } if (err) return err; @@ -16472,7 +16624,7 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env, } if (insn_flags) { - err = push_insn_history(env, this_branch, insn_flags, 0); + err = push_jmp_history(env, this_branch, insn_flags, 0); if (err) return err; } @@ -16530,7 +16682,7 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env, if (dst_reg->type == SCALAR_VALUE && dst_reg->id) collect_linked_regs(this_branch, dst_reg->id, &linked_regs); if (linked_regs.cnt > 1) { - err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); + err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); if (err) return err; } @@ -16728,7 +16880,7 @@ static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) dst_reg->type = CONST_PTR_TO_MAP; } else { verbose(env, "bpf verifier is misconfigured\n"); - return -EINVAL; + return -EFAULT; } return 0; @@ -16775,7 +16927,7 @@ static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) if (!env->ops->gen_ld_abs) { verbose(env, "bpf verifier is misconfigured\n"); - return -EINVAL; + return -EFAULT; } if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || @@ -17605,17 +17757,18 @@ static int check_cfg(struct bpf_verifier_env *env) int *insn_stack, *insn_state, *insn_postorder; int ex_insn_beg, i, ret = 0; - insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); + insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); if (!insn_state) return -ENOMEM; - insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); + insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); if (!insn_stack) { kvfree(insn_state); return -ENOMEM; } - insn_postorder = env->cfg.insn_postorder = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); + insn_postorder = env->cfg.insn_postorder = + kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); if (!insn_postorder) { kvfree(insn_state); kvfree(insn_stack); @@ -17749,7 +17902,7 @@ static int check_btf_func_early(struct bpf_verifier_env *env, urecord = make_bpfptr(attr->func_info, uattr.is_kernel); min_size = min_t(u32, krec_size, urec_size); - krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); + krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL_ACCOUNT | __GFP_NOWARN); if (!krecord) return -ENOMEM; @@ -17849,7 +18002,7 @@ static int check_btf_func(struct bpf_verifier_env *env, urecord = make_bpfptr(attr->func_info, uattr.is_kernel); krecord = prog->aux->func_info; - info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); + info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); if (!info_aux) return -ENOMEM; @@ -17935,7 +18088,7 @@ static int check_btf_line(struct bpf_verifier_env *env, * pass in a smaller bpf_line_info object. */ linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), - GFP_KERNEL | __GFP_NOWARN); + GFP_KERNEL_ACCOUNT | __GFP_NOWARN); if (!linfo) return -ENOMEM; @@ -18258,10 +18411,6 @@ static void clean_verifier_state(struct bpf_verifier_env *env, { int i; - if (st->frame[0]->regs[0].live & REG_LIVE_DONE) - /* all regs in this state in all frames were already marked */ - return; - for (i = 0; i <= st->curframe; i++) clean_func_state(env, st->frame[i]); } @@ -18301,7 +18450,6 @@ static void clean_verifier_state(struct bpf_verifier_env *env, static void clean_live_states(struct bpf_verifier_env *env, int insn, struct bpf_verifier_state *cur) { - struct bpf_verifier_state *loop_entry; struct bpf_verifier_state_list *sl; struct list_head *pos, *head; @@ -18310,12 +18458,14 @@ static void clean_live_states(struct bpf_verifier_env *env, int insn, sl = container_of(pos, struct bpf_verifier_state_list, node); if (sl->state.branches) continue; - loop_entry = get_loop_entry(env, &sl->state); - if (!IS_ERR_OR_NULL(loop_entry) && loop_entry->branches) - continue; if (sl->state.insn_idx != insn || !same_callsites(&sl->state, cur)) continue; + if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) + /* all regs in this state in all frames were already marked */ + continue; + if (incomplete_read_marks(env, &sl->state)) + continue; clean_verifier_state(env, &sl->state); } } @@ -18762,9 +18912,7 @@ static bool states_equal(struct bpf_verifier_env *env, * and all frame states need to be equivalent */ for (i = 0; i <= old->curframe; i++) { - insn_idx = i == old->curframe - ? env->insn_idx - : old->frame[i + 1]->callsite; + insn_idx = frame_insn_idx(old, i); if (old->frame[i]->callsite != cur->frame[i]->callsite) return false; if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact)) @@ -18811,12 +18959,15 @@ static int propagate_liveness_reg(struct bpf_verifier_env *env, */ static int propagate_liveness(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate, - struct bpf_verifier_state *vparent) + struct bpf_verifier_state *vparent, + bool *changed) { struct bpf_reg_state *state_reg, *parent_reg; struct bpf_func_state *state, *parent; int i, frame, err = 0; + bool tmp = false; + changed = changed ?: &tmp; if (vparent->curframe != vstate->curframe) { WARN(1, "propagate_live: parent frame %d current frame %d\n", vparent->curframe, vstate->curframe); @@ -18835,6 +18986,7 @@ static int propagate_liveness(struct bpf_verifier_env *env, &parent_reg[i]); if (err < 0) return err; + *changed |= err > 0; if (err == REG_LIVE_READ64) mark_insn_zext(env, &parent_reg[i]); } @@ -18846,6 +18998,7 @@ static int propagate_liveness(struct bpf_verifier_env *env, state_reg = &state->stack[i].spilled_ptr; err = propagate_liveness_reg(env, state_reg, parent_reg); + *changed |= err > 0; if (err < 0) return err; } @@ -18857,7 +19010,9 @@ static int propagate_liveness(struct bpf_verifier_env *env, * propagate them into the current state */ static int propagate_precision(struct bpf_verifier_env *env, - const struct bpf_verifier_state *old) + const struct bpf_verifier_state *old, + struct bpf_verifier_state *cur, + bool *changed) { struct bpf_reg_state *state_reg; struct bpf_func_state *state; @@ -18905,13 +19060,53 @@ static int propagate_precision(struct bpf_verifier_env *env, verbose(env, "\n"); } - err = mark_chain_precision_batch(env); + err = __mark_chain_precision(env, cur, -1, changed); if (err < 0) return err; return 0; } +#define MAX_BACKEDGE_ITERS 64 + +/* Propagate read and precision marks from visit->backedges[*].state->equal_state + * to corresponding parent states of visit->backedges[*].state until fixed point is reached, + * then free visit->backedges. + * After execution of this function incomplete_read_marks() will return false + * for all states corresponding to @visit->callchain. + */ +static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit) +{ + struct bpf_scc_backedge *backedge; + struct bpf_verifier_state *st; + bool changed; + int i, err; + + i = 0; + do { + if (i++ > MAX_BACKEDGE_ITERS) { + if (env->log.level & BPF_LOG_LEVEL2) + verbose(env, "%s: too many iterations\n", __func__); + for (backedge = visit->backedges; backedge; backedge = backedge->next) + mark_all_scalars_precise(env, &backedge->state); + break; + } + changed = false; + for (backedge = visit->backedges; backedge; backedge = backedge->next) { + st = &backedge->state; + err = propagate_liveness(env, st->equal_state, st, &changed); + if (err) + return err; + err = propagate_precision(env, st->equal_state, st, &changed); + if (err) + return err; + } + } while (changed); + + free_backedges(visit); + return 0; +} + static bool states_maybe_looping(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) { @@ -19021,14 +19216,14 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) { struct bpf_verifier_state_list *new_sl; struct bpf_verifier_state_list *sl; - struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; + struct bpf_verifier_state *cur = env->cur_state, *new; + bool force_new_state, add_new_state, loop; int i, j, n, err, states_cnt = 0; - bool force_new_state, add_new_state, force_exact; struct list_head *pos, *tmp, *head; force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || /* Avoid accumulating infinitely long jmp history */ - cur->insn_hist_end - cur->insn_hist_start > 40; + cur->jmp_history_cnt > 40; /* bpf progs typically have pruning point every 4 instructions * http://vger.kernel.org/bpfconf2019.html#session-1 @@ -19045,6 +19240,7 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) clean_live_states(env, insn_idx, cur); + loop = false; head = explored_state(env, insn_idx); list_for_each_safe(pos, tmp, head) { sl = container_of(pos, struct bpf_verifier_state_list, node); @@ -19124,7 +19320,7 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) spi = __get_spi(iter_reg->off + iter_reg->var_off.value); iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { - update_loop_entry(env, cur, &sl->state); + loop = true; goto hit; } } @@ -19133,7 +19329,7 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) if (is_may_goto_insn_at(env, insn_idx)) { if (sl->state.may_goto_depth != cur->may_goto_depth && states_equal(env, &sl->state, cur, RANGE_WITHIN)) { - update_loop_entry(env, cur, &sl->state); + loop = true; goto hit; } } @@ -19175,38 +19371,9 @@ skip_inf_loop_check: add_new_state = false; goto miss; } - /* If sl->state is a part of a loop and this loop's entry is a part of - * current verification path then states have to be compared exactly. - * 'force_exact' is needed to catch the following case: - * - * initial Here state 'succ' was processed first, - * | it was eventually tracked to produce a - * V state identical to 'hdr'. - * .---------> hdr All branches from 'succ' had been explored - * | | and thus 'succ' has its .branches == 0. - * | V - * | .------... Suppose states 'cur' and 'succ' correspond - * | | | to the same instruction + callsites. - * | V V In such case it is necessary to check - * | ... ... if 'succ' and 'cur' are states_equal(). - * | | | If 'succ' and 'cur' are a part of the - * | V V same loop exact flag has to be set. - * | succ <- cur To check if that is the case, verify - * | | if loop entry of 'succ' is in current - * | V DFS path. - * | ... - * | | - * '----' - * - * Additional details are in the comment before get_loop_entry(). - */ - loop_entry = get_loop_entry(env, &sl->state); - if (IS_ERR(loop_entry)) - return PTR_ERR(loop_entry); - force_exact = loop_entry && loop_entry->branches > 0; - if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { - if (force_exact) - update_loop_entry(env, cur, loop_entry); + /* See comments for mark_all_regs_read_and_precise() */ + loop = incomplete_read_marks(env, &sl->state); + if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) { hit: sl->hit_cnt++; /* reached equivalent register/stack state, @@ -19219,7 +19386,7 @@ hit: * they'll be immediately forgotten as we're pruning * this state and will pop a new one. */ - err = propagate_liveness(env, &sl->state, cur); + err = propagate_liveness(env, &sl->state, cur, NULL); /* if previous state reached the exit with precision and * current state is equivalent to it (except precision marks) @@ -19227,10 +19394,98 @@ hit: * the current state. */ if (is_jmp_point(env, env->insn_idx)) - err = err ? : push_insn_history(env, cur, 0, 0); - err = err ? : propagate_precision(env, &sl->state); + err = err ? : push_jmp_history(env, cur, 0, 0); + err = err ? : propagate_precision(env, &sl->state, cur, NULL); if (err) return err; + /* When processing iterator based loops above propagate_liveness and + * propagate_precision calls are not sufficient to transfer all relevant + * read and precision marks. E.g. consider the following case: + * + * .-> A --. Assume the states are visited in the order A, B, C. + * | | | Assume that state B reaches a state equivalent to state A. + * | v v At this point, state C is not processed yet, so state A + * '-- B C has not received any read or precision marks from C. + * Thus, marks propagated from A to B are incomplete. + * + * The verifier mitigates this by performing the following steps: + * + * - Prior to the main verification pass, strongly connected components + * (SCCs) are computed over the program's control flow graph, + * intraprocedurally. + * + * - During the main verification pass, `maybe_enter_scc()` checks + * whether the current verifier state is entering an SCC. If so, an + * instance of a `bpf_scc_visit` object is created, and the state + * entering the SCC is recorded as the entry state. + * + * - This instance is associated not with the SCC itself, but with a + * `bpf_scc_callchain`: a tuple consisting of the call sites leading to + * the SCC and the SCC id. See `compute_scc_callchain()`. + * + * - When a verification path encounters a `states_equal(..., + * RANGE_WITHIN)` condition, there exists a call chain describing the + * current state and a corresponding `bpf_scc_visit` instance. A copy + * of the current state is created and added to + * `bpf_scc_visit->backedges`. + * + * - When a verification path terminates, `maybe_exit_scc()` is called + * from `update_branch_counts()`. For states with `branches == 0`, it + * checks whether the state is the entry state of any `bpf_scc_visit` + * instance. If it is, this indicates that all paths originating from + * this SCC visit have been explored. `propagate_backedges()` is then + * called, which propagates read and precision marks through the + * backedges until a fixed point is reached. + * (In the earlier example, this would propagate marks from A to B, + * from C to A, and then again from A to B.) + * + * A note on callchains + * -------------------- + * + * Consider the following example: + * + * void foo() { loop { ... SCC#1 ... } } + * void main() { + * A: foo(); + * B: ... + * C: foo(); + * } + * + * Here, there are two distinct callchains leading to SCC#1: + * - (A, SCC#1) + * - (C, SCC#1) + * + * Each callchain identifies a separate `bpf_scc_visit` instance that + * accumulates backedge states. The `propagate_{liveness,precision}()` + * functions traverse the parent state of each backedge state, which + * means these parent states must remain valid (i.e., not freed) while + * the corresponding `bpf_scc_visit` instance exists. + * + * Associating `bpf_scc_visit` instances directly with SCCs instead of + * callchains would break this invariant: + * - States explored during `C: foo()` would contribute backedges to + * SCC#1, but SCC#1 would only be exited once the exploration of + * `A: foo()` completes. + * - By that time, the states explored between `A: foo()` and `C: foo()` + * (i.e., `B: ...`) may have already been freed, causing the parent + * links for states from `C: foo()` to become invalid. + */ + if (loop) { + struct bpf_scc_backedge *backedge; + + backedge = kzalloc(sizeof(*backedge), GFP_KERNEL_ACCOUNT); + if (!backedge) + return -ENOMEM; + err = copy_verifier_state(&backedge->state, cur); + backedge->state.equal_state = &sl->state; + backedge->state.insn_idx = insn_idx; + err = err ?: add_scc_backedge(env, &sl->state, backedge); + if (err) { + free_verifier_state(&backedge->state, false); + kvfree(backedge); + return err; + } + } return 1; } miss: @@ -19282,7 +19537,7 @@ miss: * When looping the sl->state.branches will be > 0 and this state * will not be considered for equivalence until branches == 0. */ - new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); + new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL_ACCOUNT); if (!new_sl) return -ENOMEM; env->total_states++; @@ -19306,11 +19561,17 @@ miss: new->insn_idx = insn_idx; WARN_ONCE(new->branches != 1, "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); + err = maybe_enter_scc(env, new); + if (err) { + free_verifier_state(new, false); + kvfree(new_sl); + return err; + } cur->parent = new; cur->first_insn_idx = insn_idx; - cur->insn_hist_start = cur->insn_hist_end; cur->dfs_depth = new->dfs_depth + 1; + clear_jmp_history(cur); list_add(&new_sl->node, head); /* connect new state to parentage chain. Current frame needs all @@ -19382,10 +19643,27 @@ static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) !reg_type_mismatch_ok(prev)); } +static bool is_ptr_to_mem_or_btf_id(enum bpf_reg_type type) +{ + switch (base_type(type)) { + case PTR_TO_MEM: + case PTR_TO_BTF_ID: + return true; + default: + return false; + } +} + +static bool is_ptr_to_mem(enum bpf_reg_type type) +{ + return base_type(type) == PTR_TO_MEM; +} + static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, bool allow_trust_mismatch) { enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; + enum bpf_reg_type merged_type; if (*prev_type == NOT_INIT) { /* Saw a valid insn @@ -19402,15 +19680,24 @@ static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type typ * Reject it. */ if (allow_trust_mismatch && - base_type(type) == PTR_TO_BTF_ID && - base_type(*prev_type) == PTR_TO_BTF_ID) { + is_ptr_to_mem_or_btf_id(type) && + is_ptr_to_mem_or_btf_id(*prev_type)) { /* * Have to support a use case when one path through * the program yields TRUSTED pointer while another * is UNTRUSTED. Fallback to UNTRUSTED to generate * BPF_PROBE_MEM/BPF_PROBE_MEMSX. + * Same behavior of MEM_RDONLY flag. */ - *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; + if (is_ptr_to_mem(type) || is_ptr_to_mem(*prev_type)) + merged_type = PTR_TO_MEM; + else + merged_type = PTR_TO_BTF_ID; + if ((type & PTR_UNTRUSTED) || (*prev_type & PTR_UNTRUSTED)) + merged_type |= PTR_UNTRUSTED; + if ((type & MEM_RDONLY) || (*prev_type & MEM_RDONLY)) + merged_type |= MEM_RDONLY; + *prev_type = merged_type; } else { verbose(env, "same insn cannot be used with different pointers\n"); return -EINVAL; @@ -19420,20 +19707,223 @@ static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type typ return 0; } +enum { + PROCESS_BPF_EXIT = 1 +}; + +static int process_bpf_exit_full(struct bpf_verifier_env *env, + bool *do_print_state, + bool exception_exit) +{ + /* We must do check_reference_leak here before + * prepare_func_exit to handle the case when + * state->curframe > 0, it may be a callback function, + * for which reference_state must match caller reference + * state when it exits. + */ + int err = check_resource_leak(env, exception_exit, + !env->cur_state->curframe, + "BPF_EXIT instruction in main prog"); + if (err) + return err; + + /* The side effect of the prepare_func_exit which is + * being skipped is that it frees bpf_func_state. + * Typically, process_bpf_exit will only be hit with + * outermost exit. copy_verifier_state in pop_stack will + * handle freeing of any extra bpf_func_state left over + * from not processing all nested function exits. We + * also skip return code checks as they are not needed + * for exceptional exits. + */ + if (exception_exit) + return PROCESS_BPF_EXIT; + + if (env->cur_state->curframe) { + /* exit from nested function */ + err = prepare_func_exit(env, &env->insn_idx); + if (err) + return err; + *do_print_state = true; + return 0; + } + + err = check_return_code(env, BPF_REG_0, "R0"); + if (err) + return err; + return PROCESS_BPF_EXIT; +} + +static int do_check_insn(struct bpf_verifier_env *env, bool *do_print_state) +{ + int err; + struct bpf_insn *insn = &env->prog->insnsi[env->insn_idx]; + u8 class = BPF_CLASS(insn->code); + + if (class == BPF_ALU || class == BPF_ALU64) { + err = check_alu_op(env, insn); + if (err) + return err; + + } else if (class == BPF_LDX) { + bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX; + + /* Check for reserved fields is already done in + * resolve_pseudo_ldimm64(). + */ + err = check_load_mem(env, insn, false, is_ldsx, true, "ldx"); + if (err) + return err; + } else if (class == BPF_STX) { + if (BPF_MODE(insn->code) == BPF_ATOMIC) { + err = check_atomic(env, insn); + if (err) + return err; + env->insn_idx++; + return 0; + } + + if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { + verbose(env, "BPF_STX uses reserved fields\n"); + return -EINVAL; + } + + err = check_store_reg(env, insn, false); + if (err) + return err; + } else if (class == BPF_ST) { + enum bpf_reg_type dst_reg_type; + + if (BPF_MODE(insn->code) != BPF_MEM || + insn->src_reg != BPF_REG_0) { + verbose(env, "BPF_ST uses reserved fields\n"); + return -EINVAL; + } + /* check src operand */ + err = check_reg_arg(env, insn->dst_reg, SRC_OP); + if (err) + return err; + + dst_reg_type = cur_regs(env)[insn->dst_reg].type; + + /* check that memory (dst_reg + off) is writeable */ + err = check_mem_access(env, env->insn_idx, insn->dst_reg, + insn->off, BPF_SIZE(insn->code), + BPF_WRITE, -1, false, false); + if (err) + return err; + + err = save_aux_ptr_type(env, dst_reg_type, false); + if (err) + return err; + } else if (class == BPF_JMP || class == BPF_JMP32) { + u8 opcode = BPF_OP(insn->code); + + env->jmps_processed++; + if (opcode == BPF_CALL) { + if (BPF_SRC(insn->code) != BPF_K || + (insn->src_reg != BPF_PSEUDO_KFUNC_CALL && + insn->off != 0) || + (insn->src_reg != BPF_REG_0 && + insn->src_reg != BPF_PSEUDO_CALL && + insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || + insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) { + verbose(env, "BPF_CALL uses reserved fields\n"); + return -EINVAL; + } + + if (env->cur_state->active_locks) { + if ((insn->src_reg == BPF_REG_0 && + insn->imm != BPF_FUNC_spin_unlock) || + (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && + (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) { + verbose(env, + "function calls are not allowed while holding a lock\n"); + return -EINVAL; + } + } + if (insn->src_reg == BPF_PSEUDO_CALL) { + err = check_func_call(env, insn, &env->insn_idx); + } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { + err = check_kfunc_call(env, insn, &env->insn_idx); + if (!err && is_bpf_throw_kfunc(insn)) + return process_bpf_exit_full(env, do_print_state, true); + } else { + err = check_helper_call(env, insn, &env->insn_idx); + } + if (err) + return err; + + mark_reg_scratched(env, BPF_REG_0); + } else if (opcode == BPF_JA) { + if (BPF_SRC(insn->code) != BPF_K || + insn->src_reg != BPF_REG_0 || + insn->dst_reg != BPF_REG_0 || + (class == BPF_JMP && insn->imm != 0) || + (class == BPF_JMP32 && insn->off != 0)) { + verbose(env, "BPF_JA uses reserved fields\n"); + return -EINVAL; + } + + if (class == BPF_JMP) + env->insn_idx += insn->off + 1; + else + env->insn_idx += insn->imm + 1; + return 0; + } else if (opcode == BPF_EXIT) { + if (BPF_SRC(insn->code) != BPF_K || + insn->imm != 0 || + insn->src_reg != BPF_REG_0 || + insn->dst_reg != BPF_REG_0 || + class == BPF_JMP32) { + verbose(env, "BPF_EXIT uses reserved fields\n"); + return -EINVAL; + } + return process_bpf_exit_full(env, do_print_state, false); + } else { + err = check_cond_jmp_op(env, insn, &env->insn_idx); + if (err) + return err; + } + } else if (class == BPF_LD) { + u8 mode = BPF_MODE(insn->code); + + if (mode == BPF_ABS || mode == BPF_IND) { + err = check_ld_abs(env, insn); + if (err) + return err; + + } else if (mode == BPF_IMM) { + err = check_ld_imm(env, insn); + if (err) + return err; + + env->insn_idx++; + sanitize_mark_insn_seen(env); + } else { + verbose(env, "invalid BPF_LD mode\n"); + return -EINVAL; + } + } else { + verbose(env, "unknown insn class %d\n", class); + return -EINVAL; + } + + env->insn_idx++; + return 0; +} + static int do_check(struct bpf_verifier_env *env) { bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); struct bpf_verifier_state *state = env->cur_state; struct bpf_insn *insns = env->prog->insnsi; - struct bpf_reg_state *regs; int insn_cnt = env->prog->len; bool do_print_state = false; int prev_insn_idx = -1; for (;;) { - bool exception_exit = false; struct bpf_insn *insn; - u8 class; int err; /* reset current history entry on each new instruction */ @@ -19447,7 +19937,6 @@ static int do_check(struct bpf_verifier_env *env) } insn = &insns[env->insn_idx]; - class = BPF_CLASS(insn->code); if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { verbose(env, @@ -19457,6 +19946,7 @@ static int do_check(struct bpf_verifier_env *env) } state->last_insn_idx = env->prev_insn_idx; + state->insn_idx = env->insn_idx; if (is_prune_point(env, env->insn_idx)) { err = is_state_visited(env, env->insn_idx); @@ -19478,7 +19968,7 @@ static int do_check(struct bpf_verifier_env *env) } if (is_jmp_point(env, env->insn_idx)) { - err = push_insn_history(env, state, 0, 0); + err = push_jmp_history(env, state, 0, 0); if (err) return err; } @@ -19517,215 +20007,60 @@ static int do_check(struct bpf_verifier_env *env) return err; } - regs = cur_regs(env); sanitize_mark_insn_seen(env); prev_insn_idx = env->insn_idx; - if (class == BPF_ALU || class == BPF_ALU64) { - err = check_alu_op(env, insn); - if (err) - return err; - - } else if (class == BPF_LDX) { - bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX; + /* Reduce verification complexity by stopping speculative path + * verification when a nospec is encountered. + */ + if (state->speculative && cur_aux(env)->nospec) + goto process_bpf_exit; - /* Check for reserved fields is already done in - * resolve_pseudo_ldimm64(). + err = do_check_insn(env, &do_print_state); + if (error_recoverable_with_nospec(err) && state->speculative) { + /* Prevent this speculative path from ever reaching the + * insn that would have been unsafe to execute. */ - err = check_load_mem(env, insn, false, is_ldsx, true, - "ldx"); - if (err) - return err; - } else if (class == BPF_STX) { - if (BPF_MODE(insn->code) == BPF_ATOMIC) { - err = check_atomic(env, insn); - if (err) - return err; - env->insn_idx++; - continue; - } - - if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { - verbose(env, "BPF_STX uses reserved fields\n"); - return -EINVAL; - } - - err = check_store_reg(env, insn, false); - if (err) - return err; - } else if (class == BPF_ST) { - enum bpf_reg_type dst_reg_type; - - if (BPF_MODE(insn->code) != BPF_MEM || - insn->src_reg != BPF_REG_0) { - verbose(env, "BPF_ST uses reserved fields\n"); - return -EINVAL; - } - /* check src operand */ - err = check_reg_arg(env, insn->dst_reg, SRC_OP); - if (err) - return err; - - dst_reg_type = regs[insn->dst_reg].type; - - /* check that memory (dst_reg + off) is writeable */ - err = check_mem_access(env, env->insn_idx, insn->dst_reg, - insn->off, BPF_SIZE(insn->code), - BPF_WRITE, -1, false, false); - if (err) - return err; - - err = save_aux_ptr_type(env, dst_reg_type, false); + cur_aux(env)->nospec = true; + /* If it was an ADD/SUB insn, potentially remove any + * markings for alu sanitization. + */ + cur_aux(env)->alu_state = 0; + goto process_bpf_exit; + } else if (err < 0) { + return err; + } else if (err == PROCESS_BPF_EXIT) { + goto process_bpf_exit; + } + WARN_ON_ONCE(err); + + if (state->speculative && cur_aux(env)->nospec_result) { + /* If we are on a path that performed a jump-op, this + * may skip a nospec patched-in after the jump. This can + * currently never happen because nospec_result is only + * used for the write-ops + * `*(size*)(dst_reg+off)=src_reg|imm32` which must + * never skip the following insn. Still, add a warning + * to document this in case nospec_result is used + * elsewhere in the future. + */ + WARN_ON_ONCE(env->insn_idx != prev_insn_idx + 1); +process_bpf_exit: + mark_verifier_state_scratched(env); + err = update_branch_counts(env, env->cur_state); if (err) return err; - } else if (class == BPF_JMP || class == BPF_JMP32) { - u8 opcode = BPF_OP(insn->code); - - env->jmps_processed++; - if (opcode == BPF_CALL) { - if (BPF_SRC(insn->code) != BPF_K || - (insn->src_reg != BPF_PSEUDO_KFUNC_CALL - && insn->off != 0) || - (insn->src_reg != BPF_REG_0 && - insn->src_reg != BPF_PSEUDO_CALL && - insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || - insn->dst_reg != BPF_REG_0 || - class == BPF_JMP32) { - verbose(env, "BPF_CALL uses reserved fields\n"); - return -EINVAL; - } - - if (env->cur_state->active_locks) { - if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || - (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && - (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) { - verbose(env, "function calls are not allowed while holding a lock\n"); - return -EINVAL; - } - } - if (insn->src_reg == BPF_PSEUDO_CALL) { - err = check_func_call(env, insn, &env->insn_idx); - } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { - err = check_kfunc_call(env, insn, &env->insn_idx); - if (!err && is_bpf_throw_kfunc(insn)) { - exception_exit = true; - goto process_bpf_exit_full; - } - } else { - err = check_helper_call(env, insn, &env->insn_idx); - } - if (err) - return err; - - mark_reg_scratched(env, BPF_REG_0); - } else if (opcode == BPF_JA) { - if (BPF_SRC(insn->code) != BPF_K || - insn->src_reg != BPF_REG_0 || - insn->dst_reg != BPF_REG_0 || - (class == BPF_JMP && insn->imm != 0) || - (class == BPF_JMP32 && insn->off != 0)) { - verbose(env, "BPF_JA uses reserved fields\n"); - return -EINVAL; - } - - if (class == BPF_JMP) - env->insn_idx += insn->off + 1; - else - env->insn_idx += insn->imm + 1; - continue; - - } else if (opcode == BPF_EXIT) { - if (BPF_SRC(insn->code) != BPF_K || - insn->imm != 0 || - insn->src_reg != BPF_REG_0 || - insn->dst_reg != BPF_REG_0 || - class == BPF_JMP32) { - verbose(env, "BPF_EXIT uses reserved fields\n"); - return -EINVAL; - } -process_bpf_exit_full: - /* We must do check_reference_leak here before - * prepare_func_exit to handle the case when - * state->curframe > 0, it may be a callback - * function, for which reference_state must - * match caller reference state when it exits. - */ - err = check_resource_leak(env, exception_exit, !env->cur_state->curframe, - "BPF_EXIT instruction in main prog"); - if (err) - return err; - - /* The side effect of the prepare_func_exit - * which is being skipped is that it frees - * bpf_func_state. Typically, process_bpf_exit - * will only be hit with outermost exit. - * copy_verifier_state in pop_stack will handle - * freeing of any extra bpf_func_state left over - * from not processing all nested function - * exits. We also skip return code checks as - * they are not needed for exceptional exits. - */ - if (exception_exit) - goto process_bpf_exit; - - if (state->curframe) { - /* exit from nested function */ - err = prepare_func_exit(env, &env->insn_idx); - if (err) - return err; - do_print_state = true; - continue; - } - - err = check_return_code(env, BPF_REG_0, "R0"); - if (err) - return err; -process_bpf_exit: - mark_verifier_state_scratched(env); - update_branch_counts(env, env->cur_state); - err = pop_stack(env, &prev_insn_idx, - &env->insn_idx, pop_log); - if (err < 0) { - if (err != -ENOENT) - return err; - break; - } else { - if (verifier_bug_if(env->cur_state->loop_entry, env, - "broken loop detection")) - return -EFAULT; - do_print_state = true; - continue; - } - } else { - err = check_cond_jmp_op(env, insn, &env->insn_idx); - if (err) - return err; - } - } else if (class == BPF_LD) { - u8 mode = BPF_MODE(insn->code); - - if (mode == BPF_ABS || mode == BPF_IND) { - err = check_ld_abs(env, insn); - if (err) - return err; - - } else if (mode == BPF_IMM) { - err = check_ld_imm(env, insn); - if (err) + err = pop_stack(env, &prev_insn_idx, &env->insn_idx, + pop_log); + if (err < 0) { + if (err != -ENOENT) return err; - - env->insn_idx++; - sanitize_mark_insn_seen(env); + break; } else { - verbose(env, "invalid BPF_LD mode\n"); - return -EINVAL; + do_print_state = true; + continue; } - } else { - verbose(env, "unknown insn class %d\n", class); - return -EINVAL; } - - env->insn_idx++; } return 0; @@ -20797,7 +21132,7 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) -(subprogs[0].stack_depth + 8)); if (epilogue_cnt >= INSN_BUF_SIZE) { verbose(env, "bpf verifier is misconfigured\n"); - return -EINVAL; + return -EFAULT; } else if (epilogue_cnt) { /* Save the ARG_PTR_TO_CTX for the epilogue to use */ cnt = 0; @@ -20820,13 +21155,13 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) if (ops->gen_prologue || env->seen_direct_write) { if (!ops->gen_prologue) { verbose(env, "bpf verifier is misconfigured\n"); - return -EINVAL; + return -EFAULT; } cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, env->prog); if (cnt >= INSN_BUF_SIZE) { verbose(env, "bpf verifier is misconfigured\n"); - return -EINVAL; + return -EFAULT; } else if (cnt) { new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); if (!new_prog) @@ -20853,6 +21188,29 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) bpf_convert_ctx_access_t convert_ctx_access; u8 mode; + if (env->insn_aux_data[i + delta].nospec) { + WARN_ON_ONCE(env->insn_aux_data[i + delta].alu_state); + struct bpf_insn patch[] = { + BPF_ST_NOSPEC(), + *insn, + }; + + cnt = ARRAY_SIZE(patch); + new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = new_prog; + insn = new_prog->insnsi + i + delta; + /* This can not be easily merged with the + * nospec_result-case, because an insn may require a + * nospec before and after itself. Therefore also do not + * 'continue' here but potentially apply further + * patching to insn. *insn should equal patch[1] now. + */ + } + if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || insn->code == (BPF_LDX | BPF_MEM | BPF_H) || insn->code == (BPF_LDX | BPF_MEM | BPF_W) || @@ -20902,7 +21260,10 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) } if (type == BPF_WRITE && - env->insn_aux_data[i + delta].sanitize_stack_spill) { + env->insn_aux_data[i + delta].nospec_result) { + /* nospec_result is only used to mitigate Spectre v4 and + * to limit verification-time for Spectre v1. + */ struct bpf_insn patch[] = { *insn, BPF_ST_NOSPEC(), @@ -20944,6 +21305,7 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) * for this case. */ case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: + case PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED: if (type == BPF_READ) { if (BPF_MODE(insn->code) == BPF_MEM) insn->code = BPF_LDX | BPF_PROBE_MEM | @@ -20983,7 +21345,7 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) if (type == BPF_WRITE) { verbose(env, "bpf verifier narrow ctx access misconfigured\n"); - return -EINVAL; + return -EFAULT; } size_code = BPF_H; @@ -21002,7 +21364,7 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) if (cnt == 0 || cnt >= INSN_BUF_SIZE || (ctx_field_size && !target_size)) { verbose(env, "bpf verifier is misconfigured\n"); - return -EINVAL; + return -EFAULT; } if (is_narrower_load && size < target_size) { @@ -21010,7 +21372,7 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) off, size, size_default) * 8; if (shift && cnt + 1 >= INSN_BUF_SIZE) { verbose(env, "bpf verifier narrow ctx load misconfigured\n"); - return -EINVAL; + return -EFAULT; } if (ctx_field_size <= 4) { if (shift) @@ -21775,7 +22137,7 @@ static int do_misc_fixups(struct bpf_verifier_env *env) cnt = env->ops->gen_ld_abs(insn, insn_buf); if (cnt == 0 || cnt >= INSN_BUF_SIZE) { verbose(env, "bpf verifier is misconfigured\n"); - return -EINVAL; + return -EFAULT; } new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); @@ -22111,7 +22473,7 @@ static int do_misc_fixups(struct bpf_verifier_env *env) goto patch_map_ops_generic; if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { verbose(env, "bpf verifier is misconfigured\n"); - return -EINVAL; + return -EFAULT; } new_prog = bpf_patch_insn_data(env, i + delta, @@ -22471,7 +22833,7 @@ next_insn: !map_ptr->ops->map_poke_untrack || !map_ptr->ops->map_poke_run) { verbose(env, "bpf verifier is misconfigured\n"); - return -EINVAL; + return -EFAULT; } ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); @@ -22661,7 +23023,12 @@ static void free_states(struct bpf_verifier_env *env) { struct bpf_verifier_state_list *sl; struct list_head *head, *pos, *tmp; - int i; + struct bpf_scc_info *info; + int i, j; + + free_verifier_state(env->cur_state, true); + env->cur_state = NULL; + while (!pop_stack(env, NULL, NULL, false)); list_for_each_safe(pos, tmp, &env->free_list) { sl = container_of(pos, struct bpf_verifier_state_list, node); @@ -22670,6 +23037,14 @@ static void free_states(struct bpf_verifier_env *env) } INIT_LIST_HEAD(&env->free_list); + for (i = 0; i < env->scc_cnt; ++i) { + info = env->scc_info[i]; + for (j = 0; j < info->num_visits; j++) + free_backedges(&info->visits[j]); + kvfree(info); + env->scc_info[i] = NULL; + } + if (!env->explored_states) return; @@ -22697,13 +23072,13 @@ static int do_check_common(struct bpf_verifier_env *env, int subprog) env->prev_linfo = NULL; env->pass_cnt++; - state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); + state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL_ACCOUNT); if (!state) return -ENOMEM; state->curframe = 0; state->speculative = false; state->branches = 1; - state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); + state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL_ACCOUNT); if (!state->frame[0]) { kfree(state); return -ENOMEM; @@ -22806,14 +23181,6 @@ static int do_check_common(struct bpf_verifier_env *env, int subprog) ret = do_check(env); out: - /* check for NULL is necessary, since cur_state can be freed inside - * do_check() under memory pressure. - */ - if (env->cur_state) { - free_verifier_state(env->cur_state, true); - env->cur_state = NULL; - } - while (!pop_stack(env, NULL, NULL, false)); if (!ret && pop_log) bpf_vlog_reset(&env->log, 0); free_states(env); @@ -22929,7 +23296,7 @@ static void print_verification_stats(struct bpf_verifier_env *env) int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog, const struct bpf_ctx_arg_aux *info, u32 cnt) { - prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL); + prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL_ACCOUNT); prog->aux->ctx_arg_info_size = cnt; return prog->aux->ctx_arg_info ? 0 : -ENOMEM; @@ -23671,6 +24038,7 @@ static bool can_jump(struct bpf_insn *insn) case BPF_JSLT: case BPF_JSLE: case BPF_JCOND: + case BPF_JSET: return true; } @@ -23873,7 +24241,7 @@ static int compute_live_registers(struct bpf_verifier_env *env) * - repeat the computation while {in,out} fields changes for * any instruction. */ - state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL); + state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL_ACCOUNT); if (!state) { err = -ENOMEM; goto out; @@ -23911,6 +24279,10 @@ static int compute_live_registers(struct bpf_verifier_env *env) if (env->log.level & BPF_LOG_LEVEL2) { verbose(env, "Live regs before insn:\n"); for (i = 0; i < insn_cnt; ++i) { + if (env->insn_aux_data[i].scc) + verbose(env, "%3d ", env->insn_aux_data[i].scc); + else + verbose(env, " "); verbose(env, "%3d: ", i); for (j = BPF_REG_0; j < BPF_REG_10; ++j) if (insn_aux[i].live_regs_before & BIT(j)) @@ -23932,6 +24304,185 @@ out: return err; } +/* + * Compute strongly connected components (SCCs) on the CFG. + * Assign an SCC number to each instruction, recorded in env->insn_aux[*].scc. + * If instruction is a sole member of its SCC and there are no self edges, + * assign it SCC number of zero. + * Uses a non-recursive adaptation of Tarjan's algorithm for SCC computation. + */ +static int compute_scc(struct bpf_verifier_env *env) +{ + const u32 NOT_ON_STACK = U32_MAX; + + struct bpf_insn_aux_data *aux = env->insn_aux_data; + const u32 insn_cnt = env->prog->len; + int stack_sz, dfs_sz, err = 0; + u32 *stack, *pre, *low, *dfs; + u32 succ_cnt, i, j, t, w; + u32 next_preorder_num; + u32 next_scc_id; + bool assign_scc; + u32 succ[2]; + + next_preorder_num = 1; + next_scc_id = 1; + /* + * - 'stack' accumulates vertices in DFS order, see invariant comment below; + * - 'pre[t] == p' => preorder number of vertex 't' is 'p'; + * - 'low[t] == n' => smallest preorder number of the vertex reachable from 't' is 'n'; + * - 'dfs' DFS traversal stack, used to emulate explicit recursion. + */ + stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); + pre = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); + low = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); + dfs = kvcalloc(insn_cnt, sizeof(*dfs), GFP_KERNEL_ACCOUNT); + if (!stack || !pre || !low || !dfs) { + err = -ENOMEM; + goto exit; + } + /* + * References: + * [1] R. Tarjan "Depth-First Search and Linear Graph Algorithms" + * [2] D. J. Pearce "A Space-Efficient Algorithm for Finding Strongly Connected Components" + * + * The algorithm maintains the following invariant: + * - suppose there is a path 'u' ~> 'v', such that 'pre[v] < pre[u]'; + * - then, vertex 'u' remains on stack while vertex 'v' is on stack. + * + * Consequently: + * - If 'low[v] < pre[v]', there is a path from 'v' to some vertex 'u', + * such that 'pre[u] == low[v]'; vertex 'u' is currently on the stack, + * and thus there is an SCC (loop) containing both 'u' and 'v'. + * - If 'low[v] == pre[v]', loops containing 'v' have been explored, + * and 'v' can be considered the root of some SCC. + * + * Here is a pseudo-code for an explicitly recursive version of the algorithm: + * + * NOT_ON_STACK = insn_cnt + 1 + * pre = [0] * insn_cnt + * low = [0] * insn_cnt + * scc = [0] * insn_cnt + * stack = [] + * + * next_preorder_num = 1 + * next_scc_id = 1 + * + * def recur(w): + * nonlocal next_preorder_num + * nonlocal next_scc_id + * + * pre[w] = next_preorder_num + * low[w] = next_preorder_num + * next_preorder_num += 1 + * stack.append(w) + * for s in successors(w): + * # Note: for classic algorithm the block below should look as: + * # + * # if pre[s] == 0: + * # recur(s) + * # low[w] = min(low[w], low[s]) + * # elif low[s] != NOT_ON_STACK: + * # low[w] = min(low[w], pre[s]) + * # + * # But replacing both 'min' instructions with 'low[w] = min(low[w], low[s])' + * # does not break the invariant and makes itartive version of the algorithm + * # simpler. See 'Algorithm #3' from [2]. + * + * # 's' not yet visited + * if pre[s] == 0: + * recur(s) + * # if 's' is on stack, pick lowest reachable preorder number from it; + * # if 's' is not on stack 'low[s] == NOT_ON_STACK > low[w]', + * # so 'min' would be a noop. + * low[w] = min(low[w], low[s]) + * + * if low[w] == pre[w]: + * # 'w' is the root of an SCC, pop all vertices + * # below 'w' on stack and assign same SCC to them. + * while True: + * t = stack.pop() + * low[t] = NOT_ON_STACK + * scc[t] = next_scc_id + * if t == w: + * break + * next_scc_id += 1 + * + * for i in range(0, insn_cnt): + * if pre[i] == 0: + * recur(i) + * + * Below implementation replaces explicit recusion with array 'dfs'. + */ + for (i = 0; i < insn_cnt; i++) { + if (pre[i]) + continue; + stack_sz = 0; + dfs_sz = 1; + dfs[0] = i; +dfs_continue: + while (dfs_sz) { + w = dfs[dfs_sz - 1]; + if (pre[w] == 0) { + low[w] = next_preorder_num; + pre[w] = next_preorder_num; + next_preorder_num++; + stack[stack_sz++] = w; + } + /* Visit 'w' successors */ + succ_cnt = insn_successors(env->prog, w, succ); + for (j = 0; j < succ_cnt; ++j) { + if (pre[succ[j]]) { + low[w] = min(low[w], low[succ[j]]); + } else { + dfs[dfs_sz++] = succ[j]; + goto dfs_continue; + } + } + /* + * Preserve the invariant: if some vertex above in the stack + * is reachable from 'w', keep 'w' on the stack. + */ + if (low[w] < pre[w]) { + dfs_sz--; + goto dfs_continue; + } + /* + * Assign SCC number only if component has two or more elements, + * or if component has a self reference. + */ + assign_scc = stack[stack_sz - 1] != w; + for (j = 0; j < succ_cnt; ++j) { + if (succ[j] == w) { + assign_scc = true; + break; + } + } + /* Pop component elements from stack */ + do { + t = stack[--stack_sz]; + low[t] = NOT_ON_STACK; + if (assign_scc) + aux[t].scc = next_scc_id; + } while (t != w); + if (assign_scc) + next_scc_id++; + dfs_sz--; + } + } + env->scc_info = kvcalloc(next_scc_id, sizeof(*env->scc_info), GFP_KERNEL_ACCOUNT); + if (!env->scc_info) { + err = -ENOMEM; + goto exit; + } +exit: + kvfree(stack); + kvfree(pre); + kvfree(low); + kvfree(dfs); + return err; +} + int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) { u64 start_time = ktime_get_ns(); @@ -23940,6 +24491,8 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u3 u32 log_true_size; bool is_priv; + BTF_TYPE_EMIT(enum bpf_features); + /* no program is valid */ if (ARRAY_SIZE(bpf_verifier_ops) == 0) return -EINVAL; @@ -23947,7 +24500,7 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u3 /* 'struct bpf_verifier_env' can be global, but since it's not small, * allocate/free it every time bpf_check() is called */ - env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); + env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL_ACCOUNT); if (!env) return -ENOMEM; @@ -24010,7 +24563,7 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u3 env->explored_states = kvcalloc(state_htab_size(env), sizeof(struct list_head), - GFP_USER); + GFP_KERNEL_ACCOUNT); ret = -ENOMEM; if (!env->explored_states) goto skip_full_check; @@ -24053,6 +24606,10 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u3 if (ret) goto skip_full_check; + ret = compute_scc(env); + if (ret < 0) + goto skip_full_check; + ret = compute_live_registers(env); if (ret < 0) goto skip_full_check; @@ -24137,7 +24694,7 @@ skip_full_check: /* if program passed verifier, update used_maps in bpf_prog_info */ env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, sizeof(env->used_maps[0]), - GFP_KERNEL); + GFP_KERNEL_ACCOUNT); if (!env->prog->aux->used_maps) { ret = -ENOMEM; @@ -24152,7 +24709,7 @@ skip_full_check: /* if program passed verifier, update used_btfs in bpf_prog_aux */ env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, sizeof(env->used_btfs[0]), - GFP_KERNEL); + GFP_KERNEL_ACCOUNT); if (!env->prog->aux->used_btfs) { ret = -ENOMEM; goto err_release_maps; @@ -24193,9 +24750,9 @@ err_unlock: if (!is_priv) mutex_unlock(&bpf_verifier_lock); vfree(env->insn_aux_data); - kvfree(env->insn_hist); err_free_env: kvfree(env->cfg.insn_postorder); + kvfree(env->scc_info); kvfree(env); return ret; } |