diff options
Diffstat (limited to 'kernel')
| -rw-r--r-- | kernel/cpu.c | 19 | ||||
| -rw-r--r-- | kernel/entry/common.c | 39 | ||||
| -rw-r--r-- | kernel/entry/syscall-common.c | 8 | ||||
| -rw-r--r-- | kernel/exit.c | 1 | ||||
| -rw-r--r-- | kernel/fork.c | 7 | ||||
| -rw-r--r-- | kernel/ptrace.c | 6 | ||||
| -rw-r--r-- | kernel/rseq.c | 655 | ||||
| -rw-r--r-- | kernel/sched/core.c | 830 | ||||
| -rw-r--r-- | kernel/sched/membarrier.c | 8 | ||||
| -rw-r--r-- | kernel/sched/sched.h | 392 | ||||
| -rw-r--r-- | kernel/signal.c | 2 |
11 files changed, 893 insertions, 1074 deletions
diff --git a/kernel/cpu.c b/kernel/cpu.c index db9f6c539b28..b674fdf96208 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c @@ -3085,10 +3085,13 @@ EXPORT_SYMBOL(cpu_all_bits); #ifdef CONFIG_INIT_ALL_POSSIBLE struct cpumask __cpu_possible_mask __ro_after_init = {CPU_BITS_ALL}; +unsigned int __num_possible_cpus __ro_after_init = NR_CPUS; #else struct cpumask __cpu_possible_mask __ro_after_init; +unsigned int __num_possible_cpus __ro_after_init; #endif EXPORT_SYMBOL(__cpu_possible_mask); +EXPORT_SYMBOL(__num_possible_cpus); struct cpumask __cpu_online_mask __read_mostly; EXPORT_SYMBOL(__cpu_online_mask); @@ -3116,6 +3119,7 @@ void init_cpu_present(const struct cpumask *src) void init_cpu_possible(const struct cpumask *src) { cpumask_copy(&__cpu_possible_mask, src); + __num_possible_cpus = cpumask_weight(&__cpu_possible_mask); } void set_cpu_online(unsigned int cpu, bool online) @@ -3140,6 +3144,21 @@ void set_cpu_online(unsigned int cpu, bool online) } /* + * This should be marked __init, but there is a boatload of call sites + * which need to be fixed up to do so. Sigh... + */ +void set_cpu_possible(unsigned int cpu, bool possible) +{ + if (possible) { + if (!cpumask_test_and_set_cpu(cpu, &__cpu_possible_mask)) + __num_possible_cpus++; + } else { + if (cpumask_test_and_clear_cpu(cpu, &__cpu_possible_mask)) + __num_possible_cpus--; + } +} + +/* * Activate the first processor. */ void __init boot_cpu_init(void) diff --git a/kernel/entry/common.c b/kernel/entry/common.c index f62e1d1b2063..5c792b30c58a 100644 --- a/kernel/entry/common.c +++ b/kernel/entry/common.c @@ -11,19 +11,20 @@ /* Workaround to allow gradual conversion of architecture code */ void __weak arch_do_signal_or_restart(struct pt_regs *regs) { } -/** - * exit_to_user_mode_loop - do any pending work before leaving to user space - * @regs: Pointer to pt_regs on entry stack - * @ti_work: TIF work flags as read by the caller - */ -__always_inline unsigned long exit_to_user_mode_loop(struct pt_regs *regs, - unsigned long ti_work) +#ifdef CONFIG_HAVE_GENERIC_TIF_BITS +#define EXIT_TO_USER_MODE_WORK_LOOP (EXIT_TO_USER_MODE_WORK & ~_TIF_RSEQ) +#else +#define EXIT_TO_USER_MODE_WORK_LOOP (EXIT_TO_USER_MODE_WORK) +#endif + +static __always_inline unsigned long __exit_to_user_mode_loop(struct pt_regs *regs, + unsigned long ti_work) { /* * Before returning to user space ensure that all pending work * items have been completed. */ - while (ti_work & EXIT_TO_USER_MODE_WORK) { + while (ti_work & EXIT_TO_USER_MODE_WORK_LOOP) { local_irq_enable_exit_to_user(ti_work); @@ -62,17 +63,21 @@ __always_inline unsigned long exit_to_user_mode_loop(struct pt_regs *regs, return ti_work; } -noinstr void irqentry_enter_from_user_mode(struct pt_regs *regs) +/** + * exit_to_user_mode_loop - do any pending work before leaving to user space + * @regs: Pointer to pt_regs on entry stack + * @ti_work: TIF work flags as read by the caller + */ +__always_inline unsigned long exit_to_user_mode_loop(struct pt_regs *regs, + unsigned long ti_work) { - enter_from_user_mode(regs); -} + for (;;) { + ti_work = __exit_to_user_mode_loop(regs, ti_work); -noinstr void irqentry_exit_to_user_mode(struct pt_regs *regs) -{ - instrumentation_begin(); - exit_to_user_mode_prepare(regs); - instrumentation_end(); - exit_to_user_mode(); + if (likely(!rseq_exit_to_user_mode_restart(regs, ti_work))) + return ti_work; + ti_work = read_thread_flags(); + } } noinstr irqentry_state_t irqentry_enter(struct pt_regs *regs) diff --git a/kernel/entry/syscall-common.c b/kernel/entry/syscall-common.c index 66e6ba7fa80c..940a597ded40 100644 --- a/kernel/entry/syscall-common.c +++ b/kernel/entry/syscall-common.c @@ -63,14 +63,6 @@ long syscall_trace_enter(struct pt_regs *regs, long syscall, return ret ? : syscall; } -noinstr void syscall_enter_from_user_mode_prepare(struct pt_regs *regs) -{ - enter_from_user_mode(regs); - instrumentation_begin(); - local_irq_enable(); - instrumentation_end(); -} - /* * If SYSCALL_EMU is set, then the only reason to report is when * SINGLESTEP is set (i.e. PTRACE_SYSEMU_SINGLESTEP). This syscall diff --git a/kernel/exit.c b/kernel/exit.c index fdfd05d1826c..b9667ffcf7b3 100644 --- a/kernel/exit.c +++ b/kernel/exit.c @@ -911,6 +911,7 @@ void __noreturn do_exit(long code) user_events_exit(tsk); io_uring_files_cancel(); + sched_mm_cid_exit(tsk); exit_signals(tsk); /* sets PF_EXITING */ seccomp_filter_release(tsk); diff --git a/kernel/fork.c b/kernel/fork.c index f1857672426e..83e05d6f2307 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -955,10 +955,8 @@ static struct task_struct *dup_task_struct(struct task_struct *orig, int node) #endif #ifdef CONFIG_SCHED_MM_CID - tsk->mm_cid = -1; - tsk->last_mm_cid = -1; - tsk->mm_cid_active = 0; - tsk->migrate_from_cpu = -1; + tsk->mm_cid.cid = MM_CID_UNSET; + tsk->mm_cid.active = 0; #endif return tsk; @@ -2456,6 +2454,7 @@ bad_fork_cleanup_namespaces: exit_nsproxy_namespaces(p); bad_fork_cleanup_mm: if (p->mm) { + sched_mm_cid_exit(p); mm_clear_owner(p->mm, p); mmput(p->mm); } diff --git a/kernel/ptrace.c b/kernel/ptrace.c index 75a84efad40f..392ec2f75f01 100644 --- a/kernel/ptrace.c +++ b/kernel/ptrace.c @@ -793,9 +793,9 @@ static long ptrace_get_rseq_configuration(struct task_struct *task, unsigned long size, void __user *data) { struct ptrace_rseq_configuration conf = { - .rseq_abi_pointer = (u64)(uintptr_t)task->rseq, - .rseq_abi_size = task->rseq_len, - .signature = task->rseq_sig, + .rseq_abi_pointer = (u64)(uintptr_t)task->rseq.usrptr, + .rseq_abi_size = task->rseq.len, + .signature = task->rseq.sig, .flags = 0, }; diff --git a/kernel/rseq.c b/kernel/rseq.c index 2452b7366b00..395d8b002350 100644 --- a/kernel/rseq.c +++ b/kernel/rseq.c @@ -8,98 +8,7 @@ * Mathieu Desnoyers <mathieu.desnoyers@efficios.com> */ -#include <linux/sched.h> -#include <linux/uaccess.h> -#include <linux/syscalls.h> -#include <linux/rseq.h> -#include <linux/types.h> -#include <linux/ratelimit.h> -#include <asm/ptrace.h> - -#define CREATE_TRACE_POINTS -#include <trace/events/rseq.h> - -/* The original rseq structure size (including padding) is 32 bytes. */ -#define ORIG_RSEQ_SIZE 32 - -#define RSEQ_CS_NO_RESTART_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT | \ - RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL | \ - RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE) - -#ifdef CONFIG_DEBUG_RSEQ -static struct rseq *rseq_kernel_fields(struct task_struct *t) -{ - return (struct rseq *) t->rseq_fields; -} - -static int rseq_validate_ro_fields(struct task_struct *t) -{ - static DEFINE_RATELIMIT_STATE(_rs, - DEFAULT_RATELIMIT_INTERVAL, - DEFAULT_RATELIMIT_BURST); - u32 cpu_id_start, cpu_id, node_id, mm_cid; - struct rseq __user *rseq = t->rseq; - - /* - * Validate fields which are required to be read-only by - * user-space. - */ - if (!user_read_access_begin(rseq, t->rseq_len)) - goto efault; - unsafe_get_user(cpu_id_start, &rseq->cpu_id_start, efault_end); - unsafe_get_user(cpu_id, &rseq->cpu_id, efault_end); - unsafe_get_user(node_id, &rseq->node_id, efault_end); - unsafe_get_user(mm_cid, &rseq->mm_cid, efault_end); - user_read_access_end(); - - if ((cpu_id_start != rseq_kernel_fields(t)->cpu_id_start || - cpu_id != rseq_kernel_fields(t)->cpu_id || - node_id != rseq_kernel_fields(t)->node_id || - mm_cid != rseq_kernel_fields(t)->mm_cid) && __ratelimit(&_rs)) { - - pr_warn("Detected rseq corruption for pid: %d, name: %s\n" - "\tcpu_id_start: %u ?= %u\n" - "\tcpu_id: %u ?= %u\n" - "\tnode_id: %u ?= %u\n" - "\tmm_cid: %u ?= %u\n", - t->pid, t->comm, - cpu_id_start, rseq_kernel_fields(t)->cpu_id_start, - cpu_id, rseq_kernel_fields(t)->cpu_id, - node_id, rseq_kernel_fields(t)->node_id, - mm_cid, rseq_kernel_fields(t)->mm_cid); - } - - /* For now, only print a console warning on mismatch. */ - return 0; - -efault_end: - user_read_access_end(); -efault: - return -EFAULT; -} - -/* - * Update an rseq field and its in-kernel copy in lock-step to keep a coherent - * state. - */ -#define rseq_unsafe_put_user(t, value, field, error_label) \ - do { \ - unsafe_put_user(value, &t->rseq->field, error_label); \ - rseq_kernel_fields(t)->field = value; \ - } while (0) - -#else -static int rseq_validate_ro_fields(struct task_struct *t) -{ - return 0; -} - -#define rseq_unsafe_put_user(t, value, field, error_label) \ - unsafe_put_user(value, &t->rseq->field, error_label) -#endif - /* - * * Restartable sequences are a lightweight interface that allows * user-level code to be executed atomically relative to scheduler * preemption and signal delivery. Typically used for implementing @@ -158,356 +67,356 @@ static int rseq_validate_ro_fields(struct task_struct *t) * F1. <failure> */ -static int rseq_update_cpu_node_id(struct task_struct *t) -{ - struct rseq __user *rseq = t->rseq; - u32 cpu_id = raw_smp_processor_id(); - u32 node_id = cpu_to_node(cpu_id); - u32 mm_cid = task_mm_cid(t); +/* Required to select the proper per_cpu ops for rseq_stats_inc() */ +#define RSEQ_BUILD_SLOW_PATH - /* - * Validate read-only rseq fields. - */ - if (rseq_validate_ro_fields(t)) - goto efault; - WARN_ON_ONCE((int) mm_cid < 0); - if (!user_write_access_begin(rseq, t->rseq_len)) - goto efault; +#include <linux/debugfs.h> +#include <linux/ratelimit.h> +#include <linux/rseq_entry.h> +#include <linux/sched.h> +#include <linux/syscalls.h> +#include <linux/uaccess.h> +#include <linux/types.h> +#include <asm/ptrace.h> - rseq_unsafe_put_user(t, cpu_id, cpu_id_start, efault_end); - rseq_unsafe_put_user(t, cpu_id, cpu_id, efault_end); - rseq_unsafe_put_user(t, node_id, node_id, efault_end); - rseq_unsafe_put_user(t, mm_cid, mm_cid, efault_end); +#define CREATE_TRACE_POINTS +#include <trace/events/rseq.h> - /* - * Additional feature fields added after ORIG_RSEQ_SIZE - * need to be conditionally updated only if - * t->rseq_len != ORIG_RSEQ_SIZE. - */ - user_write_access_end(); - trace_rseq_update(t); - return 0; +DEFINE_STATIC_KEY_MAYBE(CONFIG_RSEQ_DEBUG_DEFAULT_ENABLE, rseq_debug_enabled); -efault_end: - user_write_access_end(); -efault: - return -EFAULT; +static inline void rseq_control_debug(bool on) +{ + if (on) + static_branch_enable(&rseq_debug_enabled); + else + static_branch_disable(&rseq_debug_enabled); } -static int rseq_reset_rseq_cpu_node_id(struct task_struct *t) +static int __init rseq_setup_debug(char *str) { - struct rseq __user *rseq = t->rseq; - u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED, node_id = 0, - mm_cid = 0; - - /* - * Validate read-only rseq fields. - */ - if (rseq_validate_ro_fields(t)) - goto efault; + bool on; - if (!user_write_access_begin(rseq, t->rseq_len)) - goto efault; - - /* - * Reset all fields to their initial state. - * - * All fields have an initial state of 0 except cpu_id which is set to - * RSEQ_CPU_ID_UNINITIALIZED, so that any user coming in after - * unregistration can figure out that rseq needs to be registered - * again. - */ - rseq_unsafe_put_user(t, cpu_id_start, cpu_id_start, efault_end); - rseq_unsafe_put_user(t, cpu_id, cpu_id, efault_end); - rseq_unsafe_put_user(t, node_id, node_id, efault_end); - rseq_unsafe_put_user(t, mm_cid, mm_cid, efault_end); - - /* - * Additional feature fields added after ORIG_RSEQ_SIZE - * need to be conditionally reset only if - * t->rseq_len != ORIG_RSEQ_SIZE. - */ - user_write_access_end(); - return 0; - -efault_end: - user_write_access_end(); -efault: - return -EFAULT; + if (kstrtobool(str, &on)) + return -EINVAL; + rseq_control_debug(on); + return 1; } +__setup("rseq_debug=", rseq_setup_debug); +#ifdef CONFIG_TRACEPOINTS /* - * Get the user-space pointer value stored in the 'rseq_cs' field. + * Out of line, so the actual update functions can be in a header to be + * inlined into the exit to user code. */ -static int rseq_get_rseq_cs_ptr_val(struct rseq __user *rseq, u64 *rseq_cs) +void __rseq_trace_update(struct task_struct *t) { - if (!rseq_cs) - return -EFAULT; - -#ifdef CONFIG_64BIT - if (get_user(*rseq_cs, &rseq->rseq_cs)) - return -EFAULT; -#else - if (copy_from_user(rseq_cs, &rseq->rseq_cs, sizeof(*rseq_cs))) - return -EFAULT; -#endif + trace_rseq_update(t); +} - return 0; +void __rseq_trace_ip_fixup(unsigned long ip, unsigned long start_ip, + unsigned long offset, unsigned long abort_ip) +{ + trace_rseq_ip_fixup(ip, start_ip, offset, abort_ip); } +#endif /* CONFIG_TRACEPOINTS */ -/* - * If the rseq_cs field of 'struct rseq' contains a valid pointer to - * user-space, copy 'struct rseq_cs' from user-space and validate its fields. - */ -static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs) +#ifdef CONFIG_DEBUG_FS +#ifdef CONFIG_RSEQ_STATS +DEFINE_PER_CPU(struct rseq_stats, rseq_stats); + +static int rseq_stats_show(struct seq_file *m, void *p) { - struct rseq_cs __user *urseq_cs; - u64 ptr; - u32 __user *usig; - u32 sig; - int ret; - - ret = rseq_get_rseq_cs_ptr_val(t->rseq, &ptr); - if (ret) - return ret; - - /* If the rseq_cs pointer is NULL, return a cleared struct rseq_cs. */ - if (!ptr) { - memset(rseq_cs, 0, sizeof(*rseq_cs)); - return 0; + struct rseq_stats stats = { }; + unsigned int cpu; + + for_each_possible_cpu(cpu) { + stats.exit += data_race(per_cpu(rseq_stats.exit, cpu)); + stats.signal += data_race(per_cpu(rseq_stats.signal, cpu)); + stats.slowpath += data_race(per_cpu(rseq_stats.slowpath, cpu)); + stats.fastpath += data_race(per_cpu(rseq_stats.fastpath, cpu)); + stats.ids += data_race(per_cpu(rseq_stats.ids, cpu)); + stats.cs += data_race(per_cpu(rseq_stats.cs, cpu)); + stats.clear += data_race(per_cpu(rseq_stats.clear, cpu)); + stats.fixup += data_race(per_cpu(rseq_stats.fixup, cpu)); } - /* Check that the pointer value fits in the user-space process space. */ - if (ptr >= TASK_SIZE) - return -EINVAL; - urseq_cs = (struct rseq_cs __user *)(unsigned long)ptr; - if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs))) - return -EFAULT; - if (rseq_cs->start_ip >= TASK_SIZE || - rseq_cs->start_ip + rseq_cs->post_commit_offset >= TASK_SIZE || - rseq_cs->abort_ip >= TASK_SIZE || - rseq_cs->version > 0) - return -EINVAL; - /* Check for overflow. */ - if (rseq_cs->start_ip + rseq_cs->post_commit_offset < rseq_cs->start_ip) - return -EINVAL; - /* Ensure that abort_ip is not in the critical section. */ - if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset) - return -EINVAL; + seq_printf(m, "exit: %16lu\n", stats.exit); + seq_printf(m, "signal: %16lu\n", stats.signal); + seq_printf(m, "slowp: %16lu\n", stats.slowpath); + seq_printf(m, "fastp: %16lu\n", stats.fastpath); + seq_printf(m, "ids: %16lu\n", stats.ids); + seq_printf(m, "cs: %16lu\n", stats.cs); + seq_printf(m, "clear: %16lu\n", stats.clear); + seq_printf(m, "fixup: %16lu\n", stats.fixup); + return 0; +} - usig = (u32 __user *)(unsigned long)(rseq_cs->abort_ip - sizeof(u32)); - ret = get_user(sig, usig); - if (ret) - return ret; +static int rseq_stats_open(struct inode *inode, struct file *file) +{ + return single_open(file, rseq_stats_show, inode->i_private); +} - if (current->rseq_sig != sig) { - printk_ratelimited(KERN_WARNING - "Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n", - sig, current->rseq_sig, current->pid, usig); - return -EINVAL; - } +static const struct file_operations stat_ops = { + .open = rseq_stats_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +static int __init rseq_stats_init(struct dentry *root_dir) +{ + debugfs_create_file("stats", 0444, root_dir, NULL, &stat_ops); return 0; } +#else +static inline void rseq_stats_init(struct dentry *root_dir) { } +#endif /* CONFIG_RSEQ_STATS */ -static bool rseq_warn_flags(const char *str, u32 flags) +static int rseq_debug_show(struct seq_file *m, void *p) { - u32 test_flags; - - if (!flags) - return false; - test_flags = flags & RSEQ_CS_NO_RESTART_FLAGS; - if (test_flags) - pr_warn_once("Deprecated flags (%u) in %s ABI structure", test_flags, str); - test_flags = flags & ~RSEQ_CS_NO_RESTART_FLAGS; - if (test_flags) - pr_warn_once("Unknown flags (%u) in %s ABI structure", test_flags, str); - return true; + bool on = static_branch_unlikely(&rseq_debug_enabled); + + seq_printf(m, "%d\n", on); + return 0; } -static int rseq_need_restart(struct task_struct *t, u32 cs_flags) +static ssize_t rseq_debug_write(struct file *file, const char __user *ubuf, + size_t count, loff_t *ppos) { - u32 flags, event_mask; - int ret; + bool on; - if (rseq_warn_flags("rseq_cs", cs_flags)) + if (kstrtobool_from_user(ubuf, count, &on)) return -EINVAL; - /* Get thread flags. */ - ret = get_user(flags, &t->rseq->flags); - if (ret) - return ret; + rseq_control_debug(on); + return count; +} - if (rseq_warn_flags("rseq", flags)) - return -EINVAL; +static int rseq_debug_open(struct inode *inode, struct file *file) +{ + return single_open(file, rseq_debug_show, inode->i_private); +} - /* - * Load and clear event mask atomically with respect to - * scheduler preemption and membarrier IPIs. - */ - scoped_guard(RSEQ_EVENT_GUARD) { - event_mask = t->rseq_event_mask; - t->rseq_event_mask = 0; - } +static const struct file_operations debug_ops = { + .open = rseq_debug_open, + .read = seq_read, + .write = rseq_debug_write, + .llseek = seq_lseek, + .release = single_release, +}; + +static int __init rseq_debugfs_init(void) +{ + struct dentry *root_dir = debugfs_create_dir("rseq", NULL); - return !!event_mask; + debugfs_create_file("debug", 0644, root_dir, NULL, &debug_ops); + rseq_stats_init(root_dir); + return 0; } +__initcall(rseq_debugfs_init); +#endif /* CONFIG_DEBUG_FS */ -static int clear_rseq_cs(struct rseq __user *rseq) +static bool rseq_set_ids(struct task_struct *t, struct rseq_ids *ids, u32 node_id) { - /* - * The rseq_cs field is set to NULL on preemption or signal - * delivery on top of rseq assembly block, as well as on top - * of code outside of the rseq assembly block. This performs - * a lazy clear of the rseq_cs field. - * - * Set rseq_cs to NULL. - */ -#ifdef CONFIG_64BIT - return put_user(0UL, &rseq->rseq_cs); -#else - if (clear_user(&rseq->rseq_cs, sizeof(rseq->rseq_cs))) - return -EFAULT; - return 0; -#endif + return rseq_set_ids_get_csaddr(t, ids, node_id, NULL); } -/* - * Unsigned comparison will be true when ip >= start_ip, and when - * ip < start_ip + post_commit_offset. - */ -static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs) +static bool rseq_handle_cs(struct task_struct *t, struct pt_regs *regs) { - return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset; + struct rseq __user *urseq = t->rseq.usrptr; + u64 csaddr; + + scoped_user_read_access(urseq, efault) + unsafe_get_user(csaddr, &urseq->rseq_cs, efault); + if (likely(!csaddr)) + return true; + return rseq_update_user_cs(t, regs, csaddr); +efault: + return false; } -static int rseq_ip_fixup(struct pt_regs *regs) +static void rseq_slowpath_update_usr(struct pt_regs *regs) { - unsigned long ip = instruction_pointer(regs); + /* + * Preserve rseq state and user_irq state. The generic entry code + * clears user_irq on the way out, the non-generic entry + * architectures are not having user_irq. + */ + const struct rseq_event evt_mask = { .has_rseq = true, .user_irq = true, }; struct task_struct *t = current; - struct rseq_cs rseq_cs; - int ret; + struct rseq_ids ids; + u32 node_id; + bool event; + + if (unlikely(t->flags & PF_EXITING)) + return; - ret = rseq_get_rseq_cs(t, &rseq_cs); - if (ret) - return ret; + rseq_stat_inc(rseq_stats.slowpath); /* - * Handle potentially not being within a critical section. - * If not nested over a rseq critical section, restart is useless. - * Clear the rseq_cs pointer and return. + * Read and clear the event pending bit first. If the task + * was not preempted or migrated or a signal is on the way, + * there is no point in doing any of the heavy lifting here + * on production kernels. In that case TIF_NOTIFY_RESUME + * was raised by some other functionality. + * + * This is correct because the read/clear operation is + * guarded against scheduler preemption, which makes it CPU + * local atomic. If the task is preempted right after + * re-enabling preemption then TIF_NOTIFY_RESUME is set + * again and this function is invoked another time _before_ + * the task is able to return to user mode. + * + * On a debug kernel, invoke the fixup code unconditionally + * with the result handed in to allow the detection of + * inconsistencies. */ - if (!in_rseq_cs(ip, &rseq_cs)) - return clear_rseq_cs(t->rseq); - ret = rseq_need_restart(t, rseq_cs.flags); - if (ret <= 0) - return ret; - ret = clear_rseq_cs(t->rseq); - if (ret) - return ret; - trace_rseq_ip_fixup(ip, rseq_cs.start_ip, rseq_cs.post_commit_offset, - rseq_cs.abort_ip); - instruction_pointer_set(regs, (unsigned long)rseq_cs.abort_ip); - return 0; + scoped_guard(irq) { + event = t->rseq.event.sched_switch; + t->rseq.event.all &= evt_mask.all; + ids.cpu_id = task_cpu(t); + ids.mm_cid = task_mm_cid(t); + } + + if (!event) + return; + + node_id = cpu_to_node(ids.cpu_id); + + if (unlikely(!rseq_update_usr(t, regs, &ids, node_id))) { + /* + * Clear the errors just in case this might survive magically, but + * leave the rest intact. + */ + t->rseq.event.error = 0; + force_sig(SIGSEGV); + } } -/* - * This resume handler must always be executed between any of: - * - preemption, - * - signal delivery, - * and return to user-space. - * - * This is how we can ensure that the entire rseq critical section - * will issue the commit instruction only if executed atomically with - * respect to other threads scheduled on the same CPU, and with respect - * to signal handlers. - */ -void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs) +void __rseq_handle_slowpath(struct pt_regs *regs) { - struct task_struct *t = current; - int ret, sig; - - if (unlikely(t->flags & PF_EXITING)) + /* + * If invoked from hypervisors before entering the guest via + * resume_user_mode_work(), then @regs is a NULL pointer. + * + * resume_user_mode_work() clears TIF_NOTIFY_RESUME and re-raises + * it before returning from the ioctl() to user space when + * rseq_event.sched_switch is set. + * + * So it's safe to ignore here instead of pointlessly updating it + * in the vcpu_run() loop. + */ + if (!regs) return; + rseq_slowpath_update_usr(regs); +} + +void __rseq_signal_deliver(int sig, struct pt_regs *regs) +{ + rseq_stat_inc(rseq_stats.signal); /* - * regs is NULL if and only if the caller is in a syscall path. Skip - * fixup and leave rseq_cs as is so that rseq_sycall() will detect and - * kill a misbehaving userspace on debug kernels. + * Don't update IDs, they are handled on exit to user if + * necessary. The important thing is to abort a critical section of + * the interrupted context as after this point the instruction + * pointer in @regs points to the signal handler. */ - if (regs) { - ret = rseq_ip_fixup(regs); - if (unlikely(ret < 0)) - goto error; + if (unlikely(!rseq_handle_cs(current, regs))) { + /* + * Clear the errors just in case this might survive + * magically, but leave the rest intact. + */ + current->rseq.event.error = 0; + force_sigsegv(sig); } - if (unlikely(rseq_update_cpu_node_id(t))) - goto error; - return; - -error: - sig = ksig ? ksig->sig : 0; - force_sigsegv(sig); } -#ifdef CONFIG_DEBUG_RSEQ - /* * Terminate the process if a syscall is issued within a restartable * sequence. */ -void rseq_syscall(struct pt_regs *regs) +void __rseq_debug_syscall_return(struct pt_regs *regs) { - unsigned long ip = instruction_pointer(regs); struct task_struct *t = current; - struct rseq_cs rseq_cs; + u64 csaddr; - if (!t->rseq) + if (!t->rseq.event.has_rseq) return; - if (rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs)) - force_sig(SIGSEGV); + if (get_user(csaddr, &t->rseq.usrptr->rseq_cs)) + goto fail; + if (likely(!csaddr)) + return; + if (unlikely(csaddr >= TASK_SIZE)) + goto fail; + if (rseq_debug_update_user_cs(t, regs, csaddr)) + return; +fail: + force_sig(SIGSEGV); } +#ifdef CONFIG_DEBUG_RSEQ +/* Kept around to keep GENERIC_ENTRY=n architectures supported. */ +void rseq_syscall(struct pt_regs *regs) +{ + __rseq_debug_syscall_return(regs); +} #endif +static bool rseq_reset_ids(void) +{ + struct rseq_ids ids = { + .cpu_id = RSEQ_CPU_ID_UNINITIALIZED, + .mm_cid = 0, + }; + + /* + * If this fails, terminate it because this leaves the kernel in + * stupid state as exit to user space will try to fixup the ids + * again. + */ + if (rseq_set_ids(current, &ids, 0)) + return true; + + force_sig(SIGSEGV); + return false; +} + +/* The original rseq structure size (including padding) is 32 bytes. */ +#define ORIG_RSEQ_SIZE 32 + /* * sys_rseq - setup restartable sequences for caller thread. */ -SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len, - int, flags, u32, sig) +SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len, int, flags, u32, sig) { - int ret; - u64 rseq_cs; - if (flags & RSEQ_FLAG_UNREGISTER) { if (flags & ~RSEQ_FLAG_UNREGISTER) return -EINVAL; /* Unregister rseq for current thread. */ - if (current->rseq != rseq || !current->rseq) + if (current->rseq.usrptr != rseq || !current->rseq.usrptr) return -EINVAL; - if (rseq_len != current->rseq_len) + if (rseq_len != current->rseq.len) return -EINVAL; - if (current->rseq_sig != sig) + if (current->rseq.sig != sig) return -EPERM; - ret = rseq_reset_rseq_cpu_node_id(current); - if (ret) - return ret; - current->rseq = NULL; - current->rseq_sig = 0; - current->rseq_len = 0; + if (!rseq_reset_ids()) + return -EFAULT; + rseq_reset(current); return 0; } if (unlikely(flags)) return -EINVAL; - if (current->rseq) { + if (current->rseq.usrptr) { /* * If rseq is already registered, check whether * the provided address differs from the prior * one. */ - if (current->rseq != rseq || rseq_len != current->rseq_len) + if (current->rseq.usrptr != rseq || rseq_len != current->rseq.len) return -EINVAL; - if (current->rseq_sig != sig) + if (current->rseq.sig != sig) return -EPERM; /* Already registered. */ return -EBUSY; @@ -531,43 +440,39 @@ SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len, if (!access_ok(rseq, rseq_len)) return -EFAULT; - /* - * If the rseq_cs pointer is non-NULL on registration, clear it to - * avoid a potential segfault on return to user-space. The proper thing - * to do would have been to fail the registration but this would break - * older libcs that reuse the rseq area for new threads without - * clearing the fields. - */ - if (rseq_get_rseq_cs_ptr_val(rseq, &rseq_cs)) - return -EFAULT; - if (rseq_cs && clear_rseq_cs(rseq)) - return -EFAULT; + scoped_user_write_access(rseq, efault) { + /* + * If the rseq_cs pointer is non-NULL on registration, clear it to + * avoid a potential segfault on return to user-space. The proper thing + * to do would have been to fail the registration but this would break + * older libcs that reuse the rseq area for new threads without + * clearing the fields. Don't bother reading it, just reset it. + */ + unsafe_put_user(0UL, &rseq->rseq_cs, efault); + /* Initialize IDs in user space */ + unsafe_put_user(RSEQ_CPU_ID_UNINITIALIZED, &rseq->cpu_id_start, efault); + unsafe_put_user(RSEQ_CPU_ID_UNINITIALIZED, &rseq->cpu_id, efault); + unsafe_put_user(0U, &rseq->node_id, efault); + unsafe_put_user(0U, &rseq->mm_cid, efault); + } -#ifdef CONFIG_DEBUG_RSEQ - /* - * Initialize the in-kernel rseq fields copy for validation of - * read-only fields. - */ - if (get_user(rseq_kernel_fields(current)->cpu_id_start, &rseq->cpu_id_start) || - get_user(rseq_kernel_fields(current)->cpu_id, &rseq->cpu_id) || - get_user(rseq_kernel_fields(current)->node_id, &rseq->node_id) || - get_user(rseq_kernel_fields(current)->mm_cid, &rseq->mm_cid)) - return -EFAULT; -#endif /* * Activate the registration by setting the rseq area address, length * and signature in the task struct. */ - current->rseq = rseq; - current->rseq_len = rseq_len; - current->rseq_sig = sig; + current->rseq.usrptr = rseq; + current->rseq.len = rseq_len; + current->rseq.sig = sig; /* * If rseq was previously inactive, and has just been * registered, ensure the cpu_id_start and cpu_id fields * are updated before returning to user-space. */ - rseq_set_notify_resume(current); - + current->rseq.event.has_rseq = true; + rseq_force_update(); return 0; + +efault: + return -EFAULT; } diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 0c4ff93eeb78..fc358c1b6ca9 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -2131,8 +2131,6 @@ void activate_task(struct rq *rq, struct task_struct *p, int flags) { if (task_on_rq_migrating(p)) flags |= ENQUEUE_MIGRATED; - if (flags & ENQUEUE_MIGRATED) - sched_mm_cid_migrate_to(rq, p); enqueue_task(rq, p, flags); @@ -2643,6 +2641,8 @@ out_unlock: return 0; } +static inline void mm_update_cpus_allowed(struct mm_struct *mm, const cpumask_t *affmask); + /* * sched_class::set_cpus_allowed must do the below, but is not required to * actually call this function. @@ -2656,6 +2656,7 @@ void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx cpumask_copy(&p->cpus_mask, ctx->new_mask); p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); + mm_update_cpus_allowed(p->mm, ctx->new_mask); /* * Swap in a new user_cpus_ptr if SCA_USER flag set @@ -2667,10 +2668,8 @@ void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx static void do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) { - scoped_guard (sched_change, p, DEQUEUE_SAVE) { + scoped_guard (sched_change, p, DEQUEUE_SAVE) p->sched_class->set_cpus_allowed(p, ctx); - mm_set_cpus_allowed(p->mm, ctx->new_mask); - } } /* @@ -3263,8 +3262,6 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) if (p->sched_class->migrate_task_rq) p->sched_class->migrate_task_rq(p, new_cpu); p->se.nr_migrations++; - rseq_migrate(p); - sched_mm_cid_migrate_from(p); perf_event_task_migrate(p); } @@ -4415,7 +4412,6 @@ static void __sched_fork(u64 clone_flags, struct task_struct *p) init_numa_balancing(clone_flags, p); p->wake_entry.u_flags = CSD_TYPE_TTWU; p->migration_pending = NULL; - init_sched_mm_cid(p); } DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); @@ -4691,7 +4687,6 @@ int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) p->sched_task_group = tg; } #endif - rseq_migrate(p); /* * We're setting the CPU for the first time, we don't migrate, * so use __set_task_cpu(). @@ -4755,7 +4750,6 @@ void wake_up_new_task(struct task_struct *p) * as we're not fully set-up yet. */ p->recent_used_cpu = task_cpu(p); - rseq_migrate(p); __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); rq = __task_rq_lock(p, &rf); update_rq_clock(rq); @@ -5049,7 +5043,6 @@ prepare_task_switch(struct rq *rq, struct task_struct *prev, kcov_prepare_switch(prev); sched_info_switch(rq, prev, next); perf_event_task_sched_out(prev, next); - rseq_preempt(prev); fire_sched_out_preempt_notifiers(prev, next); kmap_local_sched_out(); prepare_task(next); @@ -5212,19 +5205,16 @@ context_switch(struct rq *rq, struct task_struct *prev, * * kernel -> user switch + mmdrop_lazy_tlb() active * user -> user switch - * - * switch_mm_cid() needs to be updated if the barriers provided - * by context_switch() are modified. */ - if (!next->mm) { // to kernel + if (!next->mm) { // to kernel enter_lazy_tlb(prev->active_mm, next); next->active_mm = prev->active_mm; - if (prev->mm) // from user + if (prev->mm) // from user mmgrab_lazy_tlb(prev->active_mm); else prev->active_mm = NULL; - } else { // to user + } else { // to user membarrier_switch_mm(rq, prev->active_mm, next->mm); /* * sys_membarrier() requires an smp_mb() between setting @@ -5237,15 +5227,20 @@ context_switch(struct rq *rq, struct task_struct *prev, switch_mm_irqs_off(prev->active_mm, next->mm, next); lru_gen_use_mm(next->mm); - if (!prev->mm) { // from kernel + if (!prev->mm) { // from kernel /* will mmdrop_lazy_tlb() in finish_task_switch(). */ rq->prev_mm = prev->active_mm; prev->active_mm = NULL; } } - /* switch_mm_cid() requires the memory barriers above. */ - switch_mm_cid(rq, prev, next); + mm_cid_switch_to(prev, next); + + /* + * Tell rseq that the task was scheduled in. Must be after + * switch_mm_cid() to get the TIF flag set. + */ + rseq_sched_switch_event(next); prepare_lock_switch(rq, next, rf); @@ -5530,7 +5525,6 @@ void sched_tick(void) resched_latency = cpu_resched_latency(rq); calc_global_load_tick(rq); sched_core_tick(rq); - task_tick_mm_cid(rq, donor); scx_tick(rq); rq_unlock(rq, &rf); @@ -10260,525 +10254,501 @@ void call_trace_sched_update_nr_running(struct rq *rq, int count) } #ifdef CONFIG_SCHED_MM_CID - -/* - * @cid_lock: Guarantee forward-progress of cid allocation. - * - * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock - * is only used when contention is detected by the lock-free allocation so - * forward progress can be guaranteed. - */ -DEFINE_RAW_SPINLOCK(cid_lock); - /* - * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. + * Concurrency IDentifier management * - * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is - * detected, it is set to 1 to ensure that all newly coming allocations are - * serialized by @cid_lock until the allocation which detected contention - * completes and sets @use_cid_lock back to 0. This guarantees forward progress - * of a cid allocation. - */ -int use_cid_lock; - -/* - * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid - * concurrently with respect to the execution of the source runqueue context - * switch. - * - * There is one basic properties we want to guarantee here: - * - * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively - * used by a task. That would lead to concurrent allocation of the cid and - * userspace corruption. - * - * Provide this guarantee by introducing a Dekker memory ordering to guarantee - * that a pair of loads observe at least one of a pair of stores, which can be - * shown as: + * Serialization rules: * - * X = Y = 0 + * mm::mm_cid::mutex: Serializes fork() and exit() and therefore + * protects mm::mm_cid::users. * - * w[X]=1 w[Y]=1 - * MB MB - * r[Y]=y r[X]=x + * mm::mm_cid::lock: Serializes mm_update_max_cids() and + * mm_update_cpus_allowed(). Nests in mm_cid::mutex + * and runqueue lock. * - * Which guarantees that x==0 && y==0 is impossible. But rather than using - * values 0 and 1, this algorithm cares about specific state transitions of the - * runqueue current task (as updated by the scheduler context switch), and the - * per-mm/cpu cid value. + * The mm_cidmask bitmap is not protected by any of the mm::mm_cid locks + * and can only be modified with atomic operations. * - * Let's introduce task (Y) which has task->mm == mm and task (N) which has - * task->mm != mm for the rest of the discussion. There are two scheduler state - * transitions on context switch we care about: + * The mm::mm_cid:pcpu per CPU storage is protected by the CPUs runqueue + * lock. * - * (TSA) Store to rq->curr with transition from (N) to (Y) + * CID ownership: * - * (TSB) Store to rq->curr with transition from (Y) to (N) + * A CID is either owned by a task (stored in task_struct::mm_cid.cid) or + * by a CPU (stored in mm::mm_cid.pcpu::cid). CIDs owned by CPUs have the + * MM_CID_ONCPU bit set. During transition from CPU to task ownership mode, + * MM_CID_TRANSIT is set on the per task CIDs. When this bit is set the + * task needs to drop the CID into the pool when scheduling out. Both bits + * (ONCPU and TRANSIT) are filtered out by task_cid() when the CID is + * actually handed over to user space in the RSEQ memory. * - * On the remote-clear side, there is one transition we care about: + * Mode switching: * - * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag + * Switching to per CPU mode happens when the user count becomes greater + * than the maximum number of CIDs, which is calculated by: * - * There is also a transition to UNSET state which can be performed from all - * sides (scheduler, remote-clear). It is always performed with a cmpxchg which - * guarantees that only a single thread will succeed: + * opt_cids = min(mm_cid::nr_cpus_allowed, mm_cid::users); + * max_cids = min(1.25 * opt_cids, num_possible_cpus()); * - * (TMB) cmpxchg to *pcpu_cid to mark UNSET + * The +25% allowance is useful for tight CPU masks in scenarios where only + * a few threads are created and destroyed to avoid frequent mode + * switches. Though this allowance shrinks, the closer opt_cids becomes to + * num_possible_cpus(), which is the (unfortunate) hard ABI limit. * - * Just to be clear, what we do _not_ want to happen is a transition to UNSET - * when a thread is actively using the cid (property (1)). + * At the point of switching to per CPU mode the new user is not yet + * visible in the system, so the task which initiated the fork() runs the + * fixup function: mm_cid_fixup_tasks_to_cpu() walks the thread list and + * either transfers each tasks owned CID to the CPU the task runs on or + * drops it into the CID pool if a task is not on a CPU at that point in + * time. Tasks which schedule in before the task walk reaches them do the + * handover in mm_cid_schedin(). When mm_cid_fixup_tasks_to_cpus() completes + * it's guaranteed that no task related to that MM owns a CID anymore. * - * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. + * Switching back to task mode happens when the user count goes below the + * threshold which was recorded on the per CPU mode switch: * - * Scenario A) (TSA)+(TMA) (from next task perspective) + * pcpu_thrs = min(opt_cids - (opt_cids / 4), num_possible_cpus() / 2); * - * CPU0 CPU1 + * This threshold is updated when a affinity change increases the number of + * allowed CPUs for the MM, which might cause a switch back to per task + * mode. * - * Context switch CS-1 Remote-clear - * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) - * (implied barrier after cmpxchg) - * - switch_mm_cid() - * - memory barrier (see switch_mm_cid() - * comment explaining how this barrier - * is combined with other scheduler - * barriers) - * - mm_cid_get (next) - * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) + * If the switch back was initiated by a exiting task, then that task runs + * the fixup function. If it was initiated by a affinity change, then it's + * run either in the deferred update function in context of a workqueue or + * by a task which forks a new one or by a task which exits. Whatever + * happens first. mm_cid_fixup_cpus_to_task() walks through the possible + * CPUs and either transfers the CPU owned CIDs to a related task which + * runs on the CPU or drops it into the pool. Tasks which schedule in on a + * CPU which the walk did not cover yet do the handover themself. * - * This Dekker ensures that either task (Y) is observed by the - * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are - * observed. + * This transition from CPU to per task ownership happens in two phases: * - * If task (Y) store is observed by rcu_dereference(), it means that there is - * still an active task on the cpu. Remote-clear will therefore not transition - * to UNSET, which fulfills property (1). + * 1) mm:mm_cid.transit contains MM_CID_TRANSIT This is OR'ed on the task + * CID and denotes that the CID is only temporarily owned by the + * task. When it schedules out the task drops the CID back into the + * pool if this bit is set. * - * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), - * it will move its state to UNSET, which clears the percpu cid perhaps - * uselessly (which is not an issue for correctness). Because task (Y) is not - * observed, CPU1 can move ahead to set the state to UNSET. Because moving - * state to UNSET is done with a cmpxchg expecting that the old state has the - * LAZY flag set, only one thread will successfully UNSET. + * 2) The initiating context walks the per CPU space and after completion + * clears mm:mm_cid.transit. So after that point the CIDs are strictly + * task owned again. * - * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 - * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and - * CPU1 will observe task (Y) and do nothing more, which is fine. + * This two phase transition is required to prevent CID space exhaustion + * during the transition as a direct transfer of ownership would fail if + * two tasks are scheduled in on the same CPU before the fixup freed per + * CPU CIDs. * - * What we are effectively preventing with this Dekker is a scenario where - * neither LAZY flag nor store (Y) are observed, which would fail property (1) - * because this would UNSET a cid which is actively used. + * When mm_cid_fixup_cpus_to_tasks() completes it's guaranteed that no CID + * related to that MM is owned by a CPU anymore. */ -void sched_mm_cid_migrate_from(struct task_struct *t) +/* + * Update the CID range properties when the constraints change. Invoked via + * fork(), exit() and affinity changes + */ +static void __mm_update_max_cids(struct mm_mm_cid *mc) { - t->migrate_from_cpu = task_cpu(t); -} + unsigned int opt_cids, max_cids; -static -int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, - struct task_struct *t, - struct mm_cid *src_pcpu_cid) -{ - struct mm_struct *mm = t->mm; - struct task_struct *src_task; - int src_cid, last_mm_cid; + /* Calculate the new optimal constraint */ + opt_cids = min(mc->nr_cpus_allowed, mc->users); - if (!mm) - return -1; - - last_mm_cid = t->last_mm_cid; - /* - * If the migrated task has no last cid, or if the current - * task on src rq uses the cid, it means the source cid does not need - * to be moved to the destination cpu. - */ - if (last_mm_cid == -1) - return -1; - src_cid = READ_ONCE(src_pcpu_cid->cid); - if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) - return -1; + /* Adjust the maximum CIDs to +25% limited by the number of possible CPUs */ + max_cids = min(opt_cids + (opt_cids / 4), num_possible_cpus()); + WRITE_ONCE(mc->max_cids, max_cids); +} - /* - * If we observe an active task using the mm on this rq, it means we - * are not the last task to be migrated from this cpu for this mm, so - * there is no need to move src_cid to the destination cpu. - */ - guard(rcu)(); - src_task = rcu_dereference(src_rq->curr); - if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { - t->last_mm_cid = -1; - return -1; - } +static inline unsigned int mm_cid_calc_pcpu_thrs(struct mm_mm_cid *mc) +{ + unsigned int opt_cids; - return src_cid; + opt_cids = min(mc->nr_cpus_allowed, mc->users); + /* Has to be at least 1 because 0 indicates PCPU mode off */ + return max(min(opt_cids - opt_cids / 4, num_possible_cpus() / 2), 1); } -static -int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, - struct task_struct *t, - struct mm_cid *src_pcpu_cid, - int src_cid) +static bool mm_update_max_cids(struct mm_struct *mm) { - struct task_struct *src_task; - struct mm_struct *mm = t->mm; - int lazy_cid; - - if (src_cid == -1) - return -1; + struct mm_mm_cid *mc = &mm->mm_cid; - /* - * Attempt to clear the source cpu cid to move it to the destination - * cpu. - */ - lazy_cid = mm_cid_set_lazy_put(src_cid); - if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) - return -1; + lockdep_assert_held(&mm->mm_cid.lock); - /* - * The implicit barrier after cmpxchg per-mm/cpu cid before loading - * rq->curr->mm matches the scheduler barrier in context_switch() - * between store to rq->curr and load of prev and next task's - * per-mm/cpu cid. - * - * The implicit barrier after cmpxchg per-mm/cpu cid before loading - * rq->curr->mm_cid_active matches the barrier in - * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and - * sched_mm_cid_after_execve() between store to t->mm_cid_active and - * load of per-mm/cpu cid. - */ + /* Clear deferred mode switch flag. A change is handled by the caller */ + mc->update_deferred = false; + __mm_update_max_cids(mc); - /* - * If we observe an active task using the mm on this rq after setting - * the lazy-put flag, this task will be responsible for transitioning - * from lazy-put flag set to MM_CID_UNSET. - */ - scoped_guard (rcu) { - src_task = rcu_dereference(src_rq->curr); - if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { - /* - * We observed an active task for this mm, there is therefore - * no point in moving this cid to the destination cpu. - */ - t->last_mm_cid = -1; - return -1; - } + /* Check whether owner mode must be changed */ + if (!mc->percpu) { + /* Enable per CPU mode when the number of users is above max_cids */ + if (mc->users > mc->max_cids) + mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc); + } else { + /* Switch back to per task if user count under threshold */ + if (mc->users < mc->pcpu_thrs) + mc->pcpu_thrs = 0; } - /* - * The src_cid is unused, so it can be unset. - */ - if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) - return -1; - WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); - return src_cid; + /* Mode change required? */ + if (!!mc->percpu == !!mc->pcpu_thrs) + return false; + /* When switching back to per TASK mode, set the transition flag */ + if (!mc->pcpu_thrs) + WRITE_ONCE(mc->transit, MM_CID_TRANSIT); + WRITE_ONCE(mc->percpu, !!mc->pcpu_thrs); + return true; } -/* - * Migration to dst cpu. Called with dst_rq lock held. - * Interrupts are disabled, which keeps the window of cid ownership without the - * source rq lock held small. - */ -void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) +static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk) { - struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; - struct mm_struct *mm = t->mm; - int src_cid, src_cpu; - bool dst_cid_is_set; - struct rq *src_rq; + struct cpumask *mm_allowed; + struct mm_mm_cid *mc; + unsigned int weight; - lockdep_assert_rq_held(dst_rq); - - if (!mm) - return; - src_cpu = t->migrate_from_cpu; - if (src_cpu == -1) { - t->last_mm_cid = -1; + if (!mm || !READ_ONCE(mm->mm_cid.users)) return; - } /* - * Move the src cid if the dst cid is unset. This keeps id - * allocation closest to 0 in cases where few threads migrate around - * many CPUs. - * - * If destination cid or recent cid is already set, we may have - * to just clear the src cid to ensure compactness in frequent - * migrations scenarios. - * - * It is not useful to clear the src cid when the number of threads is - * greater or equal to the number of allowed CPUs, because user-space - * can expect that the number of allowed cids can reach the number of - * allowed CPUs. - */ - dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); - dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || - !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); - if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) + * mm::mm_cid::mm_cpus_allowed is the superset of each threads + * allowed CPUs mask which means it can only grow. + */ + mc = &mm->mm_cid; + guard(raw_spinlock)(&mc->lock); + mm_allowed = mm_cpus_allowed(mm); + weight = cpumask_weighted_or(mm_allowed, mm_allowed, affmsk); + if (weight == mc->nr_cpus_allowed) return; - src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); - src_rq = cpu_rq(src_cpu); - src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); - if (src_cid == -1) + + WRITE_ONCE(mc->nr_cpus_allowed, weight); + __mm_update_max_cids(mc); + if (!mc->percpu) return; - src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, - src_cid); - if (src_cid == -1) + + /* Adjust the threshold to the wider set */ + mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc); + /* Switch back to per task mode? */ + if (mc->users >= mc->pcpu_thrs) return; - if (dst_cid_is_set) { - __mm_cid_put(mm, src_cid); + + /* Don't queue twice */ + if (mc->update_deferred) return; - } - /* Move src_cid to dst cpu. */ - mm_cid_snapshot_time(dst_rq, mm); - WRITE_ONCE(dst_pcpu_cid->cid, src_cid); - WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); + + /* Queue the irq work, which schedules the real work */ + mc->update_deferred = true; + irq_work_queue(&mc->irq_work); } -static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, - int cpu) +static inline void mm_cid_transit_to_task(struct task_struct *t, struct mm_cid_pcpu *pcp) { - struct rq *rq = cpu_rq(cpu); - struct task_struct *t; - int cid, lazy_cid; + if (cid_on_cpu(t->mm_cid.cid)) { + unsigned int cid = cpu_cid_to_cid(t->mm_cid.cid); - cid = READ_ONCE(pcpu_cid->cid); - if (!mm_cid_is_valid(cid)) - return; + t->mm_cid.cid = cid_to_transit_cid(cid); + pcp->cid = t->mm_cid.cid; + } +} - /* - * Clear the cpu cid if it is set to keep cid allocation compact. If - * there happens to be other tasks left on the source cpu using this - * mm, the next task using this mm will reallocate its cid on context - * switch. - */ - lazy_cid = mm_cid_set_lazy_put(cid); - if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) - return; +static void mm_cid_fixup_cpus_to_tasks(struct mm_struct *mm) +{ + unsigned int cpu; - /* - * The implicit barrier after cmpxchg per-mm/cpu cid before loading - * rq->curr->mm matches the scheduler barrier in context_switch() - * between store to rq->curr and load of prev and next task's - * per-mm/cpu cid. - * - * The implicit barrier after cmpxchg per-mm/cpu cid before loading - * rq->curr->mm_cid_active matches the barrier in - * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and - * sched_mm_cid_after_execve() between store to t->mm_cid_active and - * load of per-mm/cpu cid. - */ + /* Walk the CPUs and fixup all stale CIDs */ + for_each_possible_cpu(cpu) { + struct mm_cid_pcpu *pcp = per_cpu_ptr(mm->mm_cid.pcpu, cpu); + struct rq *rq = cpu_rq(cpu); - /* - * If we observe an active task using the mm on this rq after setting - * the lazy-put flag, that task will be responsible for transitioning - * from lazy-put flag set to MM_CID_UNSET. - */ - scoped_guard (rcu) { - t = rcu_dereference(rq->curr); - if (READ_ONCE(t->mm_cid_active) && t->mm == mm) - return; + /* Remote access to mm::mm_cid::pcpu requires rq_lock */ + guard(rq_lock_irq)(rq); + /* Is the CID still owned by the CPU? */ + if (cid_on_cpu(pcp->cid)) { + /* + * If rq->curr has @mm, transfer it with the + * transition bit set. Otherwise drop it. + */ + if (rq->curr->mm == mm && rq->curr->mm_cid.active) + mm_cid_transit_to_task(rq->curr, pcp); + else + mm_drop_cid_on_cpu(mm, pcp); + + } else if (rq->curr->mm == mm && rq->curr->mm_cid.active) { + unsigned int cid = rq->curr->mm_cid.cid; + + /* Ensure it has the transition bit set */ + if (!cid_in_transit(cid)) { + cid = cid_to_transit_cid(cid); + rq->curr->mm_cid.cid = cid; + pcp->cid = cid; + } + } } + /* Clear the transition bit */ + WRITE_ONCE(mm->mm_cid.transit, 0); +} - /* - * The cid is unused, so it can be unset. - * Disable interrupts to keep the window of cid ownership without rq - * lock small. - */ - scoped_guard (irqsave) { - if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) - __mm_cid_put(mm, cid); +static inline void mm_cid_transfer_to_cpu(struct task_struct *t, struct mm_cid_pcpu *pcp) +{ + if (cid_on_task(t->mm_cid.cid)) { + t->mm_cid.cid = cid_to_cpu_cid(t->mm_cid.cid); + pcp->cid = t->mm_cid.cid; } } -static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) +static bool mm_cid_fixup_task_to_cpu(struct task_struct *t, struct mm_struct *mm) { - struct rq *rq = cpu_rq(cpu); - struct mm_cid *pcpu_cid; - struct task_struct *curr; - u64 rq_clock; + /* Remote access to mm::mm_cid::pcpu requires rq_lock */ + guard(task_rq_lock)(t); + /* If the task is not active it is not in the users count */ + if (!t->mm_cid.active) + return false; + if (cid_on_task(t->mm_cid.cid)) { + /* If running on the CPU, transfer the CID, otherwise drop it */ + if (task_rq(t)->curr == t) + mm_cid_transfer_to_cpu(t, per_cpu_ptr(mm->mm_cid.pcpu, task_cpu(t))); + else + mm_unset_cid_on_task(t); + } + return true; +} - /* - * rq->clock load is racy on 32-bit but one spurious clear once in a - * while is irrelevant. - */ - rq_clock = READ_ONCE(rq->clock); - pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); +static void mm_cid_fixup_tasks_to_cpus(void) +{ + struct mm_struct *mm = current->mm; + struct task_struct *p, *t; + unsigned int users; /* - * In order to take care of infrequently scheduled tasks, bump the time - * snapshot associated with this cid if an active task using the mm is - * observed on this rq. + * This can obviously race with a concurrent affinity change, which + * increases the number of allowed CPUs for this mm, but that does + * not affect the mode and only changes the CID constraints. A + * possible switch back to per task mode happens either in the + * deferred handler function or in the next fork()/exit(). + * + * The caller has already transferred. The newly incoming task is + * already accounted for, but not yet visible. */ - scoped_guard (rcu) { - curr = rcu_dereference(rq->curr); - if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { - WRITE_ONCE(pcpu_cid->time, rq_clock); - return; - } + users = mm->mm_cid.users - 2; + if (!users) + return; + + guard(rcu)(); + for_other_threads(current, t) { + if (mm_cid_fixup_task_to_cpu(t, mm)) + users--; } - if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) + if (!users) return; - sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); + + /* Happens only for VM_CLONE processes. */ + for_each_process_thread(p, t) { + if (t == current || t->mm != mm) + continue; + if (mm_cid_fixup_task_to_cpu(t, mm)) { + if (--users == 0) + return; + } + } } -static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, - int weight) +static bool sched_mm_cid_add_user(struct task_struct *t, struct mm_struct *mm) { - struct mm_cid *pcpu_cid; - int cid; - - pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); - cid = READ_ONCE(pcpu_cid->cid); - if (!mm_cid_is_valid(cid) || cid < weight) - return; - sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); + t->mm_cid.active = 1; + mm->mm_cid.users++; + return mm_update_max_cids(mm); } -static void task_mm_cid_work(struct callback_head *work) +void sched_mm_cid_fork(struct task_struct *t) { - unsigned long now = jiffies, old_scan, next_scan; - struct task_struct *t = current; - struct cpumask *cidmask; - struct mm_struct *mm; - int weight, cpu; + struct mm_struct *mm = t->mm; + bool percpu; - WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work)); + WARN_ON_ONCE(!mm || t->mm_cid.cid != MM_CID_UNSET); - work->next = work; /* Prevent double-add */ - if (t->flags & PF_EXITING) - return; - mm = t->mm; - if (!mm) - return; - old_scan = READ_ONCE(mm->mm_cid_next_scan); - next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); - if (!old_scan) { - unsigned long res; - - res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); - if (res != old_scan) - old_scan = res; + guard(mutex)(&mm->mm_cid.mutex); + scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { + struct mm_cid_pcpu *pcp = this_cpu_ptr(mm->mm_cid.pcpu); + + /* First user ? */ + if (!mm->mm_cid.users) { + sched_mm_cid_add_user(t, mm); + t->mm_cid.cid = mm_get_cid(mm); + /* Required for execve() */ + pcp->cid = t->mm_cid.cid; + return; + } + + if (!sched_mm_cid_add_user(t, mm)) { + if (!mm->mm_cid.percpu) + t->mm_cid.cid = mm_get_cid(mm); + return; + } + + /* Handle the mode change and transfer current's CID */ + percpu = !!mm->mm_cid.percpu; + if (!percpu) + mm_cid_transit_to_task(current, pcp); else - old_scan = next_scan; + mm_cid_transfer_to_cpu(current, pcp); } - if (time_before(now, old_scan)) - return; - if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) - return; - cidmask = mm_cidmask(mm); - /* Clear cids that were not recently used. */ - for_each_possible_cpu(cpu) - sched_mm_cid_remote_clear_old(mm, cpu); - weight = cpumask_weight(cidmask); - /* - * Clear cids that are greater or equal to the cidmask weight to - * recompact it. - */ - for_each_possible_cpu(cpu) - sched_mm_cid_remote_clear_weight(mm, cpu, weight); -} - -void init_sched_mm_cid(struct task_struct *t) -{ - struct mm_struct *mm = t->mm; - int mm_users = 0; - if (mm) { - mm_users = atomic_read(&mm->mm_users); - if (mm_users == 1) - mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); + if (percpu) { + mm_cid_fixup_tasks_to_cpus(); + } else { + mm_cid_fixup_cpus_to_tasks(mm); + t->mm_cid.cid = mm_get_cid(mm); } - t->cid_work.next = &t->cid_work; /* Protect against double add */ - init_task_work(&t->cid_work, task_mm_cid_work); } -void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) +static bool sched_mm_cid_remove_user(struct task_struct *t) { - struct callback_head *work = &curr->cid_work; - unsigned long now = jiffies; - - if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || - work->next != work) - return; - if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) - return; - - /* No page allocation under rq lock */ - task_work_add(curr, work, TWA_RESUME); + t->mm_cid.active = 0; + scoped_guard(preempt) { + /* Clear the transition bit */ + t->mm_cid.cid = cid_from_transit_cid(t->mm_cid.cid); + mm_unset_cid_on_task(t); + } + t->mm->mm_cid.users--; + return mm_update_max_cids(t->mm); } -void sched_mm_cid_exit_signals(struct task_struct *t) +static bool __sched_mm_cid_exit(struct task_struct *t) { struct mm_struct *mm = t->mm; - struct rq *rq; - if (!mm) - return; - - preempt_disable(); - rq = this_rq(); - guard(rq_lock_irqsave)(rq); - preempt_enable_no_resched(); /* holding spinlock */ - WRITE_ONCE(t->mm_cid_active, 0); + if (!sched_mm_cid_remove_user(t)) + return false; + /* + * Contrary to fork() this only deals with a switch back to per + * task mode either because the above decreased users or an + * affinity change increased the number of allowed CPUs and the + * deferred fixup did not run yet. + */ + if (WARN_ON_ONCE(mm->mm_cid.percpu)) + return false; /* - * Store t->mm_cid_active before loading per-mm/cpu cid. - * Matches barrier in sched_mm_cid_remote_clear_old(). + * A failed fork(2) cleanup never gets here, so @current must have + * the same MM as @t. That's true for exit() and the failed + * pthread_create() cleanup case. */ - smp_mb(); - mm_cid_put(mm); - t->last_mm_cid = t->mm_cid = -1; + if (WARN_ON_ONCE(current->mm != mm)) + return false; + return true; } -void sched_mm_cid_before_execve(struct task_struct *t) +/* + * When a task exits, the MM CID held by the task is not longer required as + * the task cannot return to user space. + */ +void sched_mm_cid_exit(struct task_struct *t) { struct mm_struct *mm = t->mm; - struct rq *rq; - if (!mm) + if (!mm || !t->mm_cid.active) return; + /* + * Ensure that only one instance is doing MM CID operations within + * a MM. The common case is uncontended. The rare fixup case adds + * some overhead. + */ + scoped_guard(mutex, &mm->mm_cid.mutex) { + /* mm_cid::mutex is sufficient to protect mm_cid::users */ + if (likely(mm->mm_cid.users > 1)) { + scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { + if (!__sched_mm_cid_exit(t)) + return; + /* Mode change required. Transfer currents CID */ + mm_cid_transit_to_task(current, this_cpu_ptr(mm->mm_cid.pcpu)); + } + mm_cid_fixup_cpus_to_tasks(mm); + return; + } + /* Last user */ + scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { + /* Required across execve() */ + if (t == current) + mm_cid_transit_to_task(t, this_cpu_ptr(mm->mm_cid.pcpu)); + /* Ignore mode change. There is nothing to do. */ + sched_mm_cid_remove_user(t); + } + } - preempt_disable(); - rq = this_rq(); - guard(rq_lock_irqsave)(rq); - preempt_enable_no_resched(); /* holding spinlock */ - WRITE_ONCE(t->mm_cid_active, 0); /* - * Store t->mm_cid_active before loading per-mm/cpu cid. - * Matches barrier in sched_mm_cid_remote_clear_old(). + * As this is the last user (execve(), process exit or failed + * fork(2)) there is no concurrency anymore. + * + * Synchronize eventually pending work to ensure that there are no + * dangling references left. @t->mm_cid.users is zero so nothing + * can queue this work anymore. */ - smp_mb(); - mm_cid_put(mm); - t->last_mm_cid = t->mm_cid = -1; + irq_work_sync(&mm->mm_cid.irq_work); + cancel_work_sync(&mm->mm_cid.work); +} + +/* Deactivate MM CID allocation across execve() */ +void sched_mm_cid_before_execve(struct task_struct *t) +{ + sched_mm_cid_exit(t); } +/* Reactivate MM CID after successful execve() */ void sched_mm_cid_after_execve(struct task_struct *t) { - struct mm_struct *mm = t->mm; - struct rq *rq; + sched_mm_cid_fork(t); +} + +static void mm_cid_work_fn(struct work_struct *work) +{ + struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.work); - if (!mm) + guard(mutex)(&mm->mm_cid.mutex); + /* Did the last user task exit already? */ + if (!mm->mm_cid.users) return; - preempt_disable(); - rq = this_rq(); - scoped_guard (rq_lock_irqsave, rq) { - preempt_enable_no_resched(); /* holding spinlock */ - WRITE_ONCE(t->mm_cid_active, 1); - /* - * Store t->mm_cid_active before loading per-mm/cpu cid. - * Matches barrier in sched_mm_cid_remote_clear_old(). - */ - smp_mb(); - t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); + scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { + /* Have fork() or exit() handled it already? */ + if (!mm->mm_cid.update_deferred) + return; + /* This clears mm_cid::update_deferred */ + if (!mm_update_max_cids(mm)) + return; + /* Affinity changes can only switch back to task mode */ + if (WARN_ON_ONCE(mm->mm_cid.percpu)) + return; } + mm_cid_fixup_cpus_to_tasks(mm); } -void sched_mm_cid_fork(struct task_struct *t) +static void mm_cid_irq_work(struct irq_work *work) +{ + struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.irq_work); + + /* + * Needs to be unconditional because mm_cid::lock cannot be held + * when scheduling work as mm_update_cpus_allowed() nests inside + * rq::lock and schedule_work() might end up in wakeup... + */ + schedule_work(&mm->mm_cid.work); +} + +void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { - WARN_ON_ONCE(!t->mm || t->mm_cid != -1); - t->mm_cid_active = 1; + mm->mm_cid.max_cids = 0; + mm->mm_cid.percpu = 0; + mm->mm_cid.transit = 0; + mm->mm_cid.nr_cpus_allowed = p->nr_cpus_allowed; + mm->mm_cid.users = 0; + mm->mm_cid.pcpu_thrs = 0; + mm->mm_cid.update_deferred = 0; + raw_spin_lock_init(&mm->mm_cid.lock); + mutex_init(&mm->mm_cid.mutex); + mm->mm_cid.irq_work = IRQ_WORK_INIT_HARD(mm_cid_irq_work); + INIT_WORK(&mm->mm_cid.work, mm_cid_work_fn); + cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask); + bitmap_zero(mm_cidmask(mm), num_possible_cpus()); } -#endif /* CONFIG_SCHED_MM_CID */ +#else /* CONFIG_SCHED_MM_CID */ +static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk) { } +#endif /* !CONFIG_SCHED_MM_CID */ static DEFINE_PER_CPU(struct sched_change_ctx, sched_change_ctx); diff --git a/kernel/sched/membarrier.c b/kernel/sched/membarrier.c index 62fba83b7bb1..623445603725 100644 --- a/kernel/sched/membarrier.c +++ b/kernel/sched/membarrier.c @@ -199,7 +199,7 @@ static void ipi_rseq(void *info) * is negligible. */ smp_mb(); - rseq_preempt(current); + rseq_sched_switch_event(current); } static void ipi_sync_rq_state(void *info) @@ -407,9 +407,9 @@ static int membarrier_private_expedited(int flags, int cpu_id) * membarrier, we will end up with some thread in the mm * running without a core sync. * - * For RSEQ, don't rseq_preempt() the caller. User code - * is not supposed to issue syscalls at all from inside an - * rseq critical section. + * For RSEQ, don't invoke rseq_sched_switch_event() on the + * caller. User code is not supposed to issue syscalls at + * all from inside an rseq critical section. */ if (flags != MEMBARRIER_FLAG_SYNC_CORE) { preempt_disable(); diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index b419a4d98461..8590113e4a60 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -2223,6 +2223,7 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) smp_wmb(); WRITE_ONCE(task_thread_info(p)->cpu, cpu); p->wake_cpu = cpu; + rseq_sched_set_ids_changed(p); #endif /* CONFIG_SMP */ } @@ -3679,283 +3680,212 @@ extern const char *preempt_modes[]; #ifdef CONFIG_SCHED_MM_CID -#define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ -#define MM_CID_SCAN_DELAY 100 /* 100ms */ +static __always_inline bool cid_on_cpu(unsigned int cid) +{ + return cid & MM_CID_ONCPU; +} -extern raw_spinlock_t cid_lock; -extern int use_cid_lock; +static __always_inline bool cid_in_transit(unsigned int cid) +{ + return cid & MM_CID_TRANSIT; +} -extern void sched_mm_cid_migrate_from(struct task_struct *t); -extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); -extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); -extern void init_sched_mm_cid(struct task_struct *t); +static __always_inline unsigned int cpu_cid_to_cid(unsigned int cid) +{ + return cid & ~MM_CID_ONCPU; +} -static inline void __mm_cid_put(struct mm_struct *mm, int cid) +static __always_inline unsigned int cid_to_cpu_cid(unsigned int cid) { - if (cid < 0) - return; - cpumask_clear_cpu(cid, mm_cidmask(mm)); + return cid | MM_CID_ONCPU; } -/* - * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to - * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to - * be held to transition to other states. - * - * State transitions synchronized with cmpxchg or try_cmpxchg need to be - * consistent across CPUs, which prevents use of this_cpu_cmpxchg. - */ -static inline void mm_cid_put_lazy(struct task_struct *t) +static __always_inline unsigned int cid_to_transit_cid(unsigned int cid) { - struct mm_struct *mm = t->mm; - struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; - int cid; + return cid | MM_CID_TRANSIT; +} - lockdep_assert_irqs_disabled(); - cid = __this_cpu_read(pcpu_cid->cid); - if (!mm_cid_is_lazy_put(cid) || - !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) - return; - __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); +static __always_inline unsigned int cid_from_transit_cid(unsigned int cid) +{ + return cid & ~MM_CID_TRANSIT; } -static inline int mm_cid_pcpu_unset(struct mm_struct *mm) +static __always_inline bool cid_on_task(unsigned int cid) { - struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; - int cid, res; + /* True if none of the MM_CID_ONCPU, MM_CID_TRANSIT, MM_CID_UNSET bits is set */ + return cid < MM_CID_TRANSIT; +} - lockdep_assert_irqs_disabled(); - cid = __this_cpu_read(pcpu_cid->cid); - for (;;) { - if (mm_cid_is_unset(cid)) - return MM_CID_UNSET; - /* - * Attempt transition from valid or lazy-put to unset. - */ - res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); - if (res == cid) - break; - cid = res; - } - return cid; +static __always_inline void mm_drop_cid(struct mm_struct *mm, unsigned int cid) +{ + clear_bit(cid, mm_cidmask(mm)); } -static inline void mm_cid_put(struct mm_struct *mm) +static __always_inline void mm_unset_cid_on_task(struct task_struct *t) { - int cid; + unsigned int cid = t->mm_cid.cid; - lockdep_assert_irqs_disabled(); - cid = mm_cid_pcpu_unset(mm); - if (cid == MM_CID_UNSET) - return; - __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); + t->mm_cid.cid = MM_CID_UNSET; + if (cid_on_task(cid)) + mm_drop_cid(t->mm, cid); } -static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) +static __always_inline void mm_drop_cid_on_cpu(struct mm_struct *mm, struct mm_cid_pcpu *pcp) { - struct cpumask *cidmask = mm_cidmask(mm); - struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; - int cid, max_nr_cid, allowed_max_nr_cid; + /* Clear the ONCPU bit, but do not set UNSET in the per CPU storage */ + pcp->cid = cpu_cid_to_cid(pcp->cid); + mm_drop_cid(mm, pcp->cid); +} - /* - * After shrinking the number of threads or reducing the number - * of allowed cpus, reduce the value of max_nr_cid so expansion - * of cid allocation will preserve cache locality if the number - * of threads or allowed cpus increase again. - */ - max_nr_cid = atomic_read(&mm->max_nr_cid); - while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed), - atomic_read(&mm->mm_users))), - max_nr_cid > allowed_max_nr_cid) { - /* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */ - if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) { - max_nr_cid = allowed_max_nr_cid; - break; - } - } - /* Try to re-use recent cid. This improves cache locality. */ - cid = __this_cpu_read(pcpu_cid->recent_cid); - if (!mm_cid_is_unset(cid) && cid < max_nr_cid && - !cpumask_test_and_set_cpu(cid, cidmask)) - return cid; - /* - * Expand cid allocation if the maximum number of concurrency - * IDs allocated (max_nr_cid) is below the number cpus allowed - * and number of threads. Expanding cid allocation as much as - * possible improves cache locality. - */ - cid = max_nr_cid; - while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { - /* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */ - if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) - continue; - if (!cpumask_test_and_set_cpu(cid, cidmask)) - return cid; - } - /* - * Find the first available concurrency id. - * Retry finding first zero bit if the mask is temporarily - * filled. This only happens during concurrent remote-clear - * which owns a cid without holding a rq lock. - */ - for (;;) { - cid = cpumask_first_zero(cidmask); - if (cid < READ_ONCE(mm->nr_cpus_allowed)) - break; - cpu_relax(); - } - if (cpumask_test_and_set_cpu(cid, cidmask)) - return -1; +static inline unsigned int __mm_get_cid(struct mm_struct *mm, unsigned int max_cids) +{ + unsigned int cid = find_first_zero_bit(mm_cidmask(mm), max_cids); + if (cid >= max_cids) + return MM_CID_UNSET; + if (test_and_set_bit(cid, mm_cidmask(mm))) + return MM_CID_UNSET; return cid; } -/* - * Save a snapshot of the current runqueue time of this cpu - * with the per-cpu cid value, allowing to estimate how recently it was used. - */ -static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) +static inline unsigned int mm_get_cid(struct mm_struct *mm) { - struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); + unsigned int cid = __mm_get_cid(mm, READ_ONCE(mm->mm_cid.max_cids)); - lockdep_assert_rq_held(rq); - WRITE_ONCE(pcpu_cid->time, rq->clock); + while (cid == MM_CID_UNSET) { + cpu_relax(); + cid = __mm_get_cid(mm, num_possible_cpus()); + } + return cid; } -static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, - struct mm_struct *mm) +static inline unsigned int mm_cid_converge(struct mm_struct *mm, unsigned int orig_cid, + unsigned int max_cids) { - int cid; + unsigned int new_cid, cid = cpu_cid_to_cid(orig_cid); - /* - * All allocations (even those using the cid_lock) are lock-free. If - * use_cid_lock is set, hold the cid_lock to perform cid allocation to - * guarantee forward progress. - */ - if (!READ_ONCE(use_cid_lock)) { - cid = __mm_cid_try_get(t, mm); - if (cid >= 0) - goto end; - raw_spin_lock(&cid_lock); - } else { - raw_spin_lock(&cid_lock); - cid = __mm_cid_try_get(t, mm); - if (cid >= 0) - goto unlock; + /* Is it in the optimal CID space? */ + if (likely(cid < max_cids)) + return orig_cid; + + /* Try to find one in the optimal space. Otherwise keep the provided. */ + new_cid = __mm_get_cid(mm, max_cids); + if (new_cid != MM_CID_UNSET) { + mm_drop_cid(mm, cid); + /* Preserve the ONCPU mode of the original CID */ + return new_cid | (orig_cid & MM_CID_ONCPU); } + return orig_cid; +} - /* - * cid concurrently allocated. Retry while forcing following - * allocations to use the cid_lock to ensure forward progress. - */ - WRITE_ONCE(use_cid_lock, 1); - /* - * Set use_cid_lock before allocation. Only care about program order - * because this is only required for forward progress. - */ - barrier(); - /* - * Retry until it succeeds. It is guaranteed to eventually succeed once - * all newcoming allocations observe the use_cid_lock flag set. - */ - do { - cid = __mm_cid_try_get(t, mm); - cpu_relax(); - } while (cid < 0); - /* - * Allocate before clearing use_cid_lock. Only care about - * program order because this is for forward progress. - */ - barrier(); - WRITE_ONCE(use_cid_lock, 0); -unlock: - raw_spin_unlock(&cid_lock); -end: - mm_cid_snapshot_time(rq, mm); +static __always_inline void mm_cid_update_task_cid(struct task_struct *t, unsigned int cid) +{ + if (t->mm_cid.cid != cid) { + t->mm_cid.cid = cid; + rseq_sched_set_ids_changed(t); + } +} - return cid; +static __always_inline void mm_cid_update_pcpu_cid(struct mm_struct *mm, unsigned int cid) +{ + __this_cpu_write(mm->mm_cid.pcpu->cid, cid); } -static inline int mm_cid_get(struct rq *rq, struct task_struct *t, - struct mm_struct *mm) +static __always_inline void mm_cid_from_cpu(struct task_struct *t, unsigned int cpu_cid) { - struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; - int cid; + unsigned int max_cids, tcid = t->mm_cid.cid; + struct mm_struct *mm = t->mm; - lockdep_assert_rq_held(rq); - cid = __this_cpu_read(pcpu_cid->cid); - if (mm_cid_is_valid(cid)) { - mm_cid_snapshot_time(rq, mm); - return cid; - } - if (mm_cid_is_lazy_put(cid)) { - if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) - __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); + max_cids = READ_ONCE(mm->mm_cid.max_cids); + /* Optimize for the common case where both have the ONCPU bit set */ + if (likely(cid_on_cpu(cpu_cid & tcid))) { + if (likely(cpu_cid_to_cid(cpu_cid) < max_cids)) { + mm_cid_update_task_cid(t, cpu_cid); + return; + } + /* Try to converge into the optimal CID space */ + cpu_cid = mm_cid_converge(mm, cpu_cid, max_cids); + } else { + /* Hand over or drop the task owned CID */ + if (cid_on_task(tcid)) { + if (cid_on_cpu(cpu_cid)) + mm_unset_cid_on_task(t); + else + cpu_cid = cid_to_cpu_cid(tcid); + } + /* Still nothing, allocate a new one */ + if (!cid_on_cpu(cpu_cid)) + cpu_cid = cid_to_cpu_cid(mm_get_cid(mm)); } - cid = __mm_cid_get(rq, t, mm); - __this_cpu_write(pcpu_cid->cid, cid); - __this_cpu_write(pcpu_cid->recent_cid, cid); - - return cid; + mm_cid_update_pcpu_cid(mm, cpu_cid); + mm_cid_update_task_cid(t, cpu_cid); } -static inline void switch_mm_cid(struct rq *rq, - struct task_struct *prev, - struct task_struct *next) +static __always_inline void mm_cid_from_task(struct task_struct *t, unsigned int cpu_cid) { - /* - * Provide a memory barrier between rq->curr store and load of - * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. - * - * Should be adapted if context_switch() is modified. - */ - if (!next->mm) { // to kernel - /* - * user -> kernel transition does not guarantee a barrier, but - * we can use the fact that it performs an atomic operation in - * mmgrab(). - */ - if (prev->mm) // from user - smp_mb__after_mmgrab(); - /* - * kernel -> kernel transition does not change rq->curr->mm - * state. It stays NULL. - */ - } else { // to user - /* - * kernel -> user transition does not provide a barrier - * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. - * Provide it here. - */ - if (!prev->mm) { // from kernel - smp_mb(); - } else { // from user - /* - * user->user transition relies on an implicit - * memory barrier in switch_mm() when - * current->mm changes. If the architecture - * switch_mm() does not have an implicit memory - * barrier, it is emitted here. If current->mm - * is unchanged, no barrier is needed. - */ - smp_mb__after_switch_mm(); + unsigned int max_cids, tcid = t->mm_cid.cid; + struct mm_struct *mm = t->mm; + + max_cids = READ_ONCE(mm->mm_cid.max_cids); + /* Optimize for the common case, where both have the ONCPU bit clear */ + if (likely(cid_on_task(tcid | cpu_cid))) { + if (likely(tcid < max_cids)) { + mm_cid_update_pcpu_cid(mm, tcid); + return; } + /* Try to converge into the optimal CID space */ + tcid = mm_cid_converge(mm, tcid, max_cids); + } else { + /* Hand over or drop the CPU owned CID */ + if (cid_on_cpu(cpu_cid)) { + if (cid_on_task(tcid)) + mm_drop_cid_on_cpu(mm, this_cpu_ptr(mm->mm_cid.pcpu)); + else + tcid = cpu_cid_to_cid(cpu_cid); + } + /* Still nothing, allocate a new one */ + if (!cid_on_task(tcid)) + tcid = mm_get_cid(mm); + /* Set the transition mode flag if required */ + tcid |= READ_ONCE(mm->mm_cid.transit); } - if (prev->mm_cid_active) { - mm_cid_snapshot_time(rq, prev->mm); - mm_cid_put_lazy(prev); - prev->mm_cid = -1; - } - if (next->mm_cid_active) - next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); + mm_cid_update_pcpu_cid(mm, tcid); + mm_cid_update_task_cid(t, tcid); +} + +static __always_inline void mm_cid_schedin(struct task_struct *next) +{ + struct mm_struct *mm = next->mm; + unsigned int cpu_cid; + + if (!next->mm_cid.active) + return; + + cpu_cid = __this_cpu_read(mm->mm_cid.pcpu->cid); + if (likely(!READ_ONCE(mm->mm_cid.percpu))) + mm_cid_from_task(next, cpu_cid); + else + mm_cid_from_cpu(next, cpu_cid); +} + +static __always_inline void mm_cid_schedout(struct task_struct *prev) +{ + /* During mode transitions CIDs are temporary and need to be dropped */ + if (likely(!cid_in_transit(prev->mm_cid.cid))) + return; + + mm_drop_cid(prev->mm, cid_from_transit_cid(prev->mm_cid.cid)); + prev->mm_cid.cid = MM_CID_UNSET; +} + +static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) +{ + mm_cid_schedout(prev); + mm_cid_schedin(next); } #else /* !CONFIG_SCHED_MM_CID: */ -static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } -static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } -static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } -static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } -static inline void init_sched_mm_cid(struct task_struct *t) { } +static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) { } #endif /* !CONFIG_SCHED_MM_CID */ extern u64 avg_vruntime(struct cfs_rq *cfs_rq); diff --git a/kernel/signal.c b/kernel/signal.c index fe9190d84f28..e42b8bd6922f 100644 --- a/kernel/signal.c +++ b/kernel/signal.c @@ -3125,7 +3125,6 @@ void exit_signals(struct task_struct *tsk) cgroup_threadgroup_change_begin(tsk); if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { - sched_mm_cid_exit_signals(tsk); tsk->flags |= PF_EXITING; cgroup_threadgroup_change_end(tsk); return; @@ -3136,7 +3135,6 @@ void exit_signals(struct task_struct *tsk) * From now this task is not visible for group-wide signals, * see wants_signal(), do_signal_stop(). */ - sched_mm_cid_exit_signals(tsk); tsk->flags |= PF_EXITING; cgroup_threadgroup_change_end(tsk); |