summaryrefslogtreecommitdiff
path: root/rust/kernel/str.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/str.rs')
-rw-r--r--rust/kernel/str.rs459
1 files changed, 343 insertions, 116 deletions
diff --git a/rust/kernel/str.rs b/rust/kernel/str.rs
index bb8d4f41475b..5c74e5f77601 100644
--- a/rust/kernel/str.rs
+++ b/rust/kernel/str.rs
@@ -2,12 +2,16 @@
//! String representations.
-use crate::alloc::{flags::*, vec_ext::VecExt, AllocError};
-use alloc::vec::Vec;
-use core::fmt::{self, Write};
-use core::ops::{self, Deref, DerefMut, Index};
-
-use crate::error::{code::*, Error};
+use crate::{
+ alloc::{flags::*, AllocError, KVec},
+ error::{to_result, Result},
+ fmt::{self, Write},
+ prelude::*,
+};
+use core::{
+ marker::PhantomData,
+ ops::{self, Deref, DerefMut, Index},
+};
/// Byte string without UTF-8 validity guarantee.
#[repr(transparent)]
@@ -30,7 +34,24 @@ impl BStr {
#[inline]
pub const fn from_bytes(bytes: &[u8]) -> &Self {
// SAFETY: `BStr` is transparent to `[u8]`.
- unsafe { &*(bytes as *const [u8] as *const BStr) }
+ unsafe { &*(core::ptr::from_ref(bytes) as *const BStr) }
+ }
+
+ /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use kernel::b_str;
+ /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo")));
+ /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar")));
+ /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!("")));
+ /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar")));
+ /// ```
+ pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> {
+ self.deref()
+ .strip_prefix(pattern.as_ref().deref())
+ .map(Self::from_bytes)
}
}
@@ -38,14 +59,15 @@ impl fmt::Display for BStr {
/// Formats printable ASCII characters, escaping the rest.
///
/// ```
- /// # use kernel::{fmt, b_str, str::{BStr, CString}};
+ /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
/// let ascii = b_str!("Hello, BStr!");
- /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
- /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes());
+ /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
+ /// assert_eq!(s.to_bytes(), "Hello, BStr!".as_bytes());
///
/// let non_ascii = b_str!("🦀");
- /// let s = CString::try_from_fmt(fmt!("{}", non_ascii)).unwrap();
- /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
+ /// let s = CString::try_from_fmt(fmt!("{non_ascii}"))?;
+ /// assert_eq!(s.to_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
+ /// # Ok::<(), kernel::error::Error>(())
/// ```
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for &b in &self.0 {
@@ -56,7 +78,7 @@ impl fmt::Display for BStr {
b'\r' => f.write_str("\\r")?,
// Printable characters.
0x20..=0x7e => f.write_char(b as char)?,
- _ => write!(f, "\\x{:02x}", b)?,
+ _ => write!(f, "\\x{b:02x}")?,
}
}
Ok(())
@@ -68,15 +90,16 @@ impl fmt::Debug for BStr {
/// escaping the rest.
///
/// ```
- /// # use kernel::{fmt, b_str, str::{BStr, CString}};
+ /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
/// // Embedded double quotes are escaped.
/// let ascii = b_str!("Hello, \"BStr\"!");
- /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
- /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
+ /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
+ /// assert_eq!(s.to_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
///
/// let non_ascii = b_str!("😺");
- /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii)).unwrap();
- /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
+ /// let s = CString::try_from_fmt(fmt!("{non_ascii:?}"))?;
+ /// assert_eq!(s.to_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
+ /// # Ok::<(), kernel::error::Error>(())
/// ```
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_char('"')?;
@@ -91,7 +114,7 @@ impl fmt::Debug for BStr {
b'\\' => f.write_str("\\\\")?,
// Printable characters.
0x20..=0x7e => f.write_char(b as char)?,
- _ => write!(f, "\\x{:02x}", b)?,
+ _ => write!(f, "\\x{b:02x}")?,
}
}
f.write_char('"')
@@ -107,6 +130,35 @@ impl Deref for BStr {
}
}
+impl PartialEq for BStr {
+ fn eq(&self, other: &Self) -> bool {
+ self.deref().eq(other.deref())
+ }
+}
+
+impl<Idx> Index<Idx> for BStr
+where
+ [u8]: Index<Idx, Output = [u8]>,
+{
+ type Output = Self;
+
+ fn index(&self, index: Idx) -> &Self::Output {
+ BStr::from_bytes(&self.0[index])
+ }
+}
+
+impl AsRef<BStr> for [u8] {
+ fn as_ref(&self) -> &BStr {
+ BStr::from_bytes(self)
+ }
+}
+
+impl AsRef<BStr> for BStr {
+ fn as_ref(&self) -> &BStr {
+ self
+ }
+}
+
/// Creates a new [`BStr`] from a string literal.
///
/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
@@ -128,6 +180,15 @@ macro_rules! b_str {
}};
}
+/// Returns a C pointer to the string.
+// It is a free function rather than a method on an extension trait because:
+//
+// - error[E0379]: functions in trait impls cannot be declared const
+#[inline]
+pub const fn as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char {
+ c_str.0.as_ptr()
+}
+
/// Possible errors when using conversion functions in [`CStr`].
#[derive(Debug, Clone, Copy)]
pub enum CStrConvertError {
@@ -162,10 +223,10 @@ impl CStr {
/// Returns the length of this string with `NUL`.
#[inline]
pub const fn len_with_nul(&self) -> usize {
- // SAFETY: This is one of the invariant of `CStr`.
- // We add a `unreachable_unchecked` here to hint the optimizer that
- // the value returned from this function is non-zero.
if self.0.is_empty() {
+ // SAFETY: This is one of the invariant of `CStr`.
+ // We add a `unreachable_unchecked` here to hint the optimizer that
+ // the value returned from this function is non-zero.
unsafe { core::hint::unreachable_unchecked() };
}
self.0.len()
@@ -185,12 +246,12 @@ impl CStr {
/// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
/// must not be mutated.
#[inline]
- pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self {
+ pub unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self {
// SAFETY: The safety precondition guarantees `ptr` is a valid pointer
// to a `NUL`-terminated C string.
let len = unsafe { bindings::strlen(ptr) } + 1;
// SAFETY: Lifetime guaranteed by the safety precondition.
- let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) };
+ let bytes = unsafe { core::slice::from_raw_parts(ptr.cast(), len) };
// SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
// As we have added 1 to `len`, the last byte is known to be `NUL`.
unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
@@ -243,27 +304,49 @@ impl CStr {
#[inline]
pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr {
// SAFETY: Properties of `bytes` guaranteed by the safety precondition.
- unsafe { &mut *(bytes as *mut [u8] as *mut CStr) }
+ unsafe { &mut *(core::ptr::from_mut(bytes) as *mut CStr) }
}
/// Returns a C pointer to the string.
+ ///
+ /// Using this function in a const context is deprecated in favor of
+ /// [`as_char_ptr_in_const_context`] in preparation for replacing `CStr` with `core::ffi::CStr`
+ /// which does not have this method.
#[inline]
- pub const fn as_char_ptr(&self) -> *const core::ffi::c_char {
- self.0.as_ptr() as _
+ pub const fn as_char_ptr(&self) -> *const c_char {
+ as_char_ptr_in_const_context(self)
}
/// Convert the string to a byte slice without the trailing `NUL` byte.
#[inline]
- pub fn as_bytes(&self) -> &[u8] {
+ pub fn to_bytes(&self) -> &[u8] {
&self.0[..self.len()]
}
+ /// Convert the string to a byte slice without the trailing `NUL` byte.
+ ///
+ /// This function is deprecated in favor of [`Self::to_bytes`] in preparation for replacing
+ /// `CStr` with `core::ffi::CStr` which does not have this method.
+ #[inline]
+ pub fn as_bytes(&self) -> &[u8] {
+ self.to_bytes()
+ }
+
/// Convert the string to a byte slice containing the trailing `NUL` byte.
#[inline]
- pub const fn as_bytes_with_nul(&self) -> &[u8] {
+ pub const fn to_bytes_with_nul(&self) -> &[u8] {
&self.0
}
+ /// Convert the string to a byte slice containing the trailing `NUL` byte.
+ ///
+ /// This function is deprecated in favor of [`Self::to_bytes_with_nul`] in preparation for
+ /// replacing `CStr` with `core::ffi::CStr` which does not have this method.
+ #[inline]
+ pub const fn as_bytes_with_nul(&self) -> &[u8] {
+ self.to_bytes_with_nul()
+ }
+
/// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
///
/// If the contents of the [`CStr`] are valid UTF-8 data, this
@@ -274,8 +357,9 @@ impl CStr {
///
/// ```
/// # use kernel::str::CStr;
- /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
+ /// let cstr = CStr::from_bytes_with_nul(b"foo\0")?;
/// assert_eq!(cstr.to_str(), Ok("foo"));
+ /// # Ok::<(), kernel::error::Error>(())
/// ```
#[inline]
pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
@@ -301,6 +385,7 @@ impl CStr {
/// ```
#[inline]
pub unsafe fn as_str_unchecked(&self) -> &str {
+ // SAFETY: TODO.
unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
}
@@ -380,24 +465,25 @@ impl fmt::Display for CStr {
///
/// ```
/// # use kernel::c_str;
- /// # use kernel::fmt;
+ /// # use kernel::prelude::fmt;
/// # use kernel::str::CStr;
/// # use kernel::str::CString;
/// let penguin = c_str!("🐧");
- /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap();
- /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
+ /// let s = CString::try_from_fmt(fmt!("{penguin}"))?;
+ /// assert_eq!(s.to_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
///
/// let ascii = c_str!("so \"cool\"");
- /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
- /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
+ /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
+ /// assert_eq!(s.to_bytes_with_nul(), "so \"cool\"\0".as_bytes());
+ /// # Ok::<(), kernel::error::Error>(())
/// ```
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- for &c in self.as_bytes() {
+ for &c in self.to_bytes() {
if (0x20..0x7f).contains(&c) {
// Printable character.
f.write_char(c as char)?;
} else {
- write!(f, "\\x{:02x}", c)?;
+ write!(f, "\\x{c:02x}")?;
}
}
Ok(())
@@ -409,17 +495,18 @@ impl fmt::Debug for CStr {
///
/// ```
/// # use kernel::c_str;
- /// # use kernel::fmt;
+ /// # use kernel::prelude::fmt;
/// # use kernel::str::CStr;
/// # use kernel::str::CString;
/// let penguin = c_str!("🐧");
- /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap();
+ /// let s = CString::try_from_fmt(fmt!("{penguin:?}"))?;
/// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
///
/// // Embedded double quotes are escaped.
/// let ascii = c_str!("so \"cool\"");
- /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
+ /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
/// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
+ /// # Ok::<(), kernel::error::Error>(())
/// ```
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("\"")?;
@@ -428,7 +515,7 @@ impl fmt::Debug for CStr {
// Printable characters.
b'\"' => f.write_str("\\\"")?,
0x20..=0x7e => f.write_char(c as char)?,
- _ => write!(f, "\\x{:02x}", c)?,
+ _ => write!(f, "\\x{c:02x}")?,
}
}
f.write_str("\"")
@@ -521,12 +608,17 @@ macro_rules! c_str {
}};
}
-#[cfg(test)]
+#[kunit_tests(rust_kernel_str)]
mod tests {
use super::*;
- use alloc::format;
- const ALL_ASCII_CHARS: &'static str =
+ macro_rules! format {
+ ($($f:tt)*) => ({
+ CString::try_from_fmt(fmt!($($f)*))?.to_str()?
+ })
+ }
+
+ const ALL_ASCII_CHARS: &str =
"\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
\\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
!\"#$%&'()*+,-./0123456789:;<=>?@\
@@ -541,90 +633,98 @@ mod tests {
\\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
#[test]
- fn test_cstr_to_str() {
+ fn test_cstr_to_str() -> Result {
let good_bytes = b"\xf0\x9f\xa6\x80\0";
- let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
- let checked_str = checked_cstr.to_str().unwrap();
+ let checked_cstr = CStr::from_bytes_with_nul(good_bytes)?;
+ let checked_str = checked_cstr.to_str()?;
assert_eq!(checked_str, "🦀");
+ Ok(())
}
#[test]
- #[should_panic]
- fn test_cstr_to_str_panic() {
+ fn test_cstr_to_str_invalid_utf8() -> Result {
let bad_bytes = b"\xc3\x28\0";
- let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
- checked_cstr.to_str().unwrap();
+ let checked_cstr = CStr::from_bytes_with_nul(bad_bytes)?;
+ assert!(checked_cstr.to_str().is_err());
+ Ok(())
}
#[test]
- fn test_cstr_as_str_unchecked() {
+ fn test_cstr_as_str_unchecked() -> Result {
let good_bytes = b"\xf0\x9f\x90\xA7\0";
- let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
+ let checked_cstr = CStr::from_bytes_with_nul(good_bytes)?;
+ // SAFETY: The contents come from a string literal which contains valid UTF-8.
let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
assert_eq!(unchecked_str, "🐧");
+ Ok(())
}
#[test]
- fn test_cstr_display() {
- let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
- assert_eq!(format!("{}", hello_world), "hello, world!");
- let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
- assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a");
- let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
- assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
- let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
- assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
+ fn test_cstr_display() -> Result {
+ let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0")?;
+ assert_eq!(format!("{hello_world}"), "hello, world!");
+ let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0")?;
+ assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a");
+ let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0")?;
+ assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
+ let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0")?;
+ assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
+ Ok(())
}
#[test]
- fn test_cstr_display_all_bytes() {
+ fn test_cstr_display_all_bytes() -> Result {
let mut bytes: [u8; 256] = [0; 256];
// fill `bytes` with [1..=255] + [0]
for i in u8::MIN..=u8::MAX {
bytes[i as usize] = i.wrapping_add(1);
}
- let cstr = CStr::from_bytes_with_nul(&bytes).unwrap();
- assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS);
+ let cstr = CStr::from_bytes_with_nul(&bytes)?;
+ assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS);
+ Ok(())
}
#[test]
- fn test_cstr_debug() {
- let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
- assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
- let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
- assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\"");
- let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
- assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
- let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
- assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
+ fn test_cstr_debug() -> Result {
+ let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0")?;
+ assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
+ let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0")?;
+ assert_eq!(format!("{non_printables:?}"), "\"\\x01\\x09\\x0a\"");
+ let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0")?;
+ assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
+ let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0")?;
+ assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
+ Ok(())
}
#[test]
- fn test_bstr_display() {
+ fn test_bstr_display() -> Result {
let hello_world = BStr::from_bytes(b"hello, world!");
- assert_eq!(format!("{}", hello_world), "hello, world!");
+ assert_eq!(format!("{hello_world}"), "hello, world!");
let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
- assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_");
+ assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_");
let others = BStr::from_bytes(b"\x01");
- assert_eq!(format!("{}", others), "\\x01");
+ assert_eq!(format!("{others}"), "\\x01");
let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
- assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
+ assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
- assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
+ assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
+ Ok(())
}
#[test]
- fn test_bstr_debug() {
+ fn test_bstr_debug() -> Result {
let hello_world = BStr::from_bytes(b"hello, world!");
- assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
+ assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
- assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
+ assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
let others = BStr::from_bytes(b"\x01");
- assert_eq!(format!("{:?}", others), "\"\\x01\"");
+ assert_eq!(format!("{others:?}"), "\"\\x01\"");
let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
- assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
+ assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
- assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
+ assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
+ Ok(())
}
}
@@ -637,7 +737,7 @@ mod tests {
///
/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
/// is less than `end`.
-pub(crate) struct RawFormatter {
+pub struct RawFormatter {
// Use `usize` to use `saturating_*` functions.
beg: usize,
pos: usize,
@@ -664,9 +764,9 @@ impl RawFormatter {
pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
// INVARIANT: The safety requirements guarantee the type invariants.
Self {
- beg: pos as _,
- pos: pos as _,
- end: end as _,
+ beg: pos as usize,
+ pos: pos as usize,
+ end: end as usize,
}
}
@@ -678,7 +778,7 @@ impl RawFormatter {
/// for the lifetime of the returned [`RawFormatter`].
pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
let pos = buf as usize;
- // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
+ // INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements
// guarantees that the memory region is valid for writes.
Self {
pos,
@@ -691,11 +791,11 @@ impl RawFormatter {
///
/// N.B. It may point to invalid memory.
pub(crate) fn pos(&self) -> *mut u8 {
- self.pos as _
+ self.pos as *mut u8
}
/// Returns the number of bytes written to the formatter.
- pub(crate) fn bytes_written(&self) -> usize {
+ pub fn bytes_written(&self) -> usize {
self.pos - self.beg
}
}
@@ -729,9 +829,9 @@ impl fmt::Write for RawFormatter {
/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
///
/// Fails if callers attempt to write more than will fit in the buffer.
-pub(crate) struct Formatter(RawFormatter);
+pub struct Formatter<'a>(RawFormatter, PhantomData<&'a mut ()>);
-impl Formatter {
+impl Formatter<'_> {
/// Creates a new instance of [`Formatter`] with the given buffer.
///
/// # Safety
@@ -740,11 +840,18 @@ impl Formatter {
/// for the lifetime of the returned [`Formatter`].
pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
// SAFETY: The safety requirements of this function satisfy those of the callee.
- Self(unsafe { RawFormatter::from_buffer(buf, len) })
+ Self(unsafe { RawFormatter::from_buffer(buf, len) }, PhantomData)
+ }
+
+ /// Create a new [`Self`] instance.
+ pub fn new(buffer: &mut [u8]) -> Self {
+ // SAFETY: `buffer` is valid for writes for the entire length for
+ // the lifetime of `Self`.
+ unsafe { Formatter::from_buffer(buffer.as_mut_ptr(), buffer.len()) }
}
}
-impl Deref for Formatter {
+impl Deref for Formatter<'_> {
type Target = RawFormatter;
fn deref(&self) -> &Self::Target {
@@ -752,7 +859,7 @@ impl Deref for Formatter {
}
}
-impl fmt::Write for Formatter {
+impl fmt::Write for Formatter<'_> {
fn write_str(&mut self, s: &str) -> fmt::Result {
self.0.write_str(s)?;
@@ -765,6 +872,132 @@ impl fmt::Write for Formatter {
}
}
+/// A mutable reference to a byte buffer where a string can be written into.
+///
+/// The buffer will be automatically null terminated after the last written character.
+///
+/// # Invariants
+///
+/// * The first byte of `buffer` is always zero.
+/// * The length of `buffer` is at least 1.
+pub(crate) struct NullTerminatedFormatter<'a> {
+ buffer: &'a mut [u8],
+}
+
+impl<'a> NullTerminatedFormatter<'a> {
+ /// Create a new [`Self`] instance.
+ pub(crate) fn new(buffer: &'a mut [u8]) -> Option<NullTerminatedFormatter<'a>> {
+ *(buffer.first_mut()?) = 0;
+
+ // INVARIANT:
+ // - We wrote zero to the first byte above.
+ // - If buffer was not at least length 1, `buffer.first_mut()` would return None.
+ Some(Self { buffer })
+ }
+}
+
+impl Write for NullTerminatedFormatter<'_> {
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ let bytes = s.as_bytes();
+ let len = bytes.len();
+
+ // We want space for a zero. By type invariant, buffer length is always at least 1, so no
+ // underflow.
+ if len > self.buffer.len() - 1 {
+ return Err(fmt::Error);
+ }
+
+ let buffer = core::mem::take(&mut self.buffer);
+ // We break the zero start invariant for a short while.
+ buffer[..len].copy_from_slice(bytes);
+ // INVARIANT: We checked above that buffer will have size at least 1 after this assignment.
+ self.buffer = &mut buffer[len..];
+
+ // INVARIANT: We write zero to the first byte of the buffer.
+ self.buffer[0] = 0;
+
+ Ok(())
+ }
+}
+
+/// # Safety
+///
+/// - `string` must point to a null terminated string that is valid for read.
+unsafe fn kstrtobool_raw(string: *const u8) -> Result<bool> {
+ let mut result: bool = false;
+
+ // SAFETY:
+ // - By function safety requirement, `string` is a valid null-terminated string.
+ // - `result` is a valid `bool` that we own.
+ to_result(unsafe { bindings::kstrtobool(string, &mut result) })?;
+ Ok(result)
+}
+
+/// Convert common user inputs into boolean values using the kernel's `kstrtobool` function.
+///
+/// This routine returns `Ok(bool)` if the first character is one of 'YyTt1NnFf0', or
+/// \[oO\]\[NnFf\] for "on" and "off". Otherwise it will return `Err(EINVAL)`.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::{c_str, str::kstrtobool};
+///
+/// // Lowercase
+/// assert_eq!(kstrtobool(c_str!("true")), Ok(true));
+/// assert_eq!(kstrtobool(c_str!("tr")), Ok(true));
+/// assert_eq!(kstrtobool(c_str!("t")), Ok(true));
+/// assert_eq!(kstrtobool(c_str!("twrong")), Ok(true));
+/// assert_eq!(kstrtobool(c_str!("false")), Ok(false));
+/// assert_eq!(kstrtobool(c_str!("f")), Ok(false));
+/// assert_eq!(kstrtobool(c_str!("yes")), Ok(true));
+/// assert_eq!(kstrtobool(c_str!("no")), Ok(false));
+/// assert_eq!(kstrtobool(c_str!("on")), Ok(true));
+/// assert_eq!(kstrtobool(c_str!("off")), Ok(false));
+///
+/// // Camel case
+/// assert_eq!(kstrtobool(c_str!("True")), Ok(true));
+/// assert_eq!(kstrtobool(c_str!("False")), Ok(false));
+/// assert_eq!(kstrtobool(c_str!("Yes")), Ok(true));
+/// assert_eq!(kstrtobool(c_str!("No")), Ok(false));
+/// assert_eq!(kstrtobool(c_str!("On")), Ok(true));
+/// assert_eq!(kstrtobool(c_str!("Off")), Ok(false));
+///
+/// // All caps
+/// assert_eq!(kstrtobool(c_str!("TRUE")), Ok(true));
+/// assert_eq!(kstrtobool(c_str!("FALSE")), Ok(false));
+/// assert_eq!(kstrtobool(c_str!("YES")), Ok(true));
+/// assert_eq!(kstrtobool(c_str!("NO")), Ok(false));
+/// assert_eq!(kstrtobool(c_str!("ON")), Ok(true));
+/// assert_eq!(kstrtobool(c_str!("OFF")), Ok(false));
+///
+/// // Numeric
+/// assert_eq!(kstrtobool(c_str!("1")), Ok(true));
+/// assert_eq!(kstrtobool(c_str!("0")), Ok(false));
+///
+/// // Invalid input
+/// assert_eq!(kstrtobool(c_str!("invalid")), Err(EINVAL));
+/// assert_eq!(kstrtobool(c_str!("2")), Err(EINVAL));
+/// ```
+pub fn kstrtobool(string: &CStr) -> Result<bool> {
+ // SAFETY:
+ // - The pointer returned by `CStr::as_char_ptr` is guaranteed to be
+ // null terminated.
+ // - `string` is live and thus the string is valid for read.
+ unsafe { kstrtobool_raw(string.as_char_ptr()) }
+}
+
+/// Convert `&[u8]` to `bool` by deferring to [`kernel::str::kstrtobool`].
+///
+/// Only considers at most the first two bytes of `bytes`.
+pub fn kstrtobool_bytes(bytes: &[u8]) -> Result<bool> {
+ // `ktostrbool` only considers the first two bytes of the input.
+ let stack_string = [*bytes.first().unwrap_or(&0), *bytes.get(1).unwrap_or(&0), 0];
+ // SAFETY: `stack_string` is null terminated and it is live on the stack so
+ // it is valid for read.
+ unsafe { kstrtobool_raw(stack_string.as_ptr()) }
+}
+
/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
///
/// Used for interoperability with kernel APIs that take C strings.
@@ -776,21 +1009,22 @@ impl fmt::Write for Formatter {
/// # Examples
///
/// ```
-/// use kernel::{str::CString, fmt};
+/// use kernel::{str::CString, prelude::fmt};
///
-/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap();
-/// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
+/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
+/// assert_eq!(s.to_bytes_with_nul(), "abc1020\0".as_bytes());
///
/// let tmp = "testing";
-/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap();
-/// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
+/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
+/// assert_eq!(s.to_bytes_with_nul(), "testing123\0".as_bytes());
///
/// // This fails because it has an embedded `NUL` byte.
/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
/// assert_eq!(s.is_ok(), false);
+/// # Ok::<(), kernel::error::Error>(())
/// ```
pub struct CString {
- buf: Vec<u8>,
+ buf: KVec<u8>,
}
impl CString {
@@ -803,7 +1037,7 @@ impl CString {
let size = f.bytes_written();
// Allocate a vector with the required number of bytes, and write to it.
- let mut buf = <Vec<_> as VecExt<_>>::with_capacity(size, GFP_KERNEL)?;
+ let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
// SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
f.write_fmt(args)?;
@@ -811,13 +1045,13 @@ impl CString {
// SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
// `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
- unsafe { buf.set_len(f.bytes_written()) };
+ unsafe { buf.inc_len(f.bytes_written()) };
// Check that there are no `NUL` bytes before the end.
// SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
// (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
// so `f.bytes_written() - 1` doesn't underflow.
- let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) };
+ let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
if !ptr.is_null() {
return Err(EINVAL);
}
@@ -850,10 +1084,9 @@ impl<'a> TryFrom<&'a CStr> for CString {
type Error = AllocError;
fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
- let mut buf = Vec::new();
+ let mut buf = KVec::new();
- <Vec<_> as VecExt<_>>::extend_from_slice(&mut buf, cstr.as_bytes_with_nul(), GFP_KERNEL)
- .map_err(|_| AllocError)?;
+ buf.extend_from_slice(cstr.to_bytes_with_nul(), GFP_KERNEL)?;
// INVARIANT: The `CStr` and `CString` types have the same invariants for
// the string data, and we copied it over without changes.
@@ -866,9 +1099,3 @@ impl fmt::Debug for CString {
fmt::Debug::fmt(&**self, f)
}
}
-
-/// A convenience alias for [`core::format_args`].
-#[macro_export]
-macro_rules! fmt {
- ($($f:tt)*) => ( core::format_args!($($f)*) )
-}