// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include #include #include "soc/intel_dram.h" #include "i915_drv.h" #include "i915_reg.h" #include "intel_bw.h" #include "intel_crtc.h" #include "intel_display_core.h" #include "intel_display_regs.h" #include "intel_display_types.h" #include "intel_display_utils.h" #include "intel_mchbar_regs.h" #include "intel_pcode.h" #include "intel_uncore.h" #include "skl_watermark.h" struct intel_bw_state { struct intel_global_state base; /* * Contains a bit mask, used to determine, whether correspondent * pipe allows SAGV or not. */ u8 pipe_sagv_reject; /* bitmask of active pipes */ u8 active_pipes; /* * From MTL onwards, to lock a QGV point, punit expects the peak BW of * the selected QGV point as the parameter in multiples of 100MB/s */ u16 qgv_point_peakbw; /* * Current QGV points mask, which restricts * some particular SAGV states, not to confuse * with pipe_sagv_mask. */ u16 qgv_points_mask; unsigned int data_rate[I915_MAX_PIPES]; u8 num_active_planes[I915_MAX_PIPES]; }; /* Parameters for Qclk Geyserville (QGV) */ struct intel_qgv_point { u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd; }; #define DEPROGBWPCLIMIT 60 struct intel_psf_gv_point { u8 clk; /* clock in multiples of 16.6666 MHz */ }; struct intel_qgv_info { struct intel_qgv_point points[I915_NUM_QGV_POINTS]; struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS]; u8 num_points; u8 num_psf_points; u8 t_bl; u8 max_numchannels; u8 channel_width; u8 deinterleave; }; static int dg1_mchbar_read_qgv_point_info(struct intel_display *display, struct intel_qgv_point *sp, int point) { struct drm_i915_private *i915 = to_i915(display->drm); u32 dclk_ratio, dclk_reference; u32 val; val = intel_uncore_read(&i915->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC); dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val); if (val & DG1_QCLK_REFERENCE) dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */ else dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */ sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000); val = intel_uncore_read(&i915->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU); if (val & DG1_GEAR_TYPE) sp->dclk *= 2; if (sp->dclk == 0) return -EINVAL; val = intel_uncore_read(&i915->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR); sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val); sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val); val = intel_uncore_read(&i915->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH); sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val); sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val); sp->t_rc = sp->t_rp + sp->t_ras; return 0; } static int icl_pcode_read_qgv_point_info(struct intel_display *display, struct intel_qgv_point *sp, int point) { u32 val = 0, val2 = 0; u16 dclk; int ret; ret = intel_pcode_read(display->drm, ICL_PCODE_MEM_SUBSYSYSTEM_INFO | ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point), &val, &val2); if (ret) return ret; dclk = val & 0xffff; sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(display) >= 12 ? 500 : 0), 1000); sp->t_rp = (val & 0xff0000) >> 16; sp->t_rcd = (val & 0xff000000) >> 24; sp->t_rdpre = val2 & 0xff; sp->t_ras = (val2 & 0xff00) >> 8; sp->t_rc = sp->t_rp + sp->t_ras; return 0; } static int adls_pcode_read_psf_gv_point_info(struct intel_display *display, struct intel_psf_gv_point *points) { u32 val = 0; int ret; int i; ret = intel_pcode_read(display->drm, ICL_PCODE_MEM_SUBSYSYSTEM_INFO | ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL); if (ret) return ret; for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) { points[i].clk = val & 0xff; val >>= 8; } return 0; } static u16 icl_qgv_points_mask(struct intel_display *display) { unsigned int num_psf_gv_points = display->bw.max[0].num_psf_gv_points; unsigned int num_qgv_points = display->bw.max[0].num_qgv_points; u16 qgv_points = 0, psf_points = 0; /* * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects * it with failure if we try masking any unadvertised points. * So need to operate only with those returned from PCode. */ if (num_qgv_points > 0) qgv_points = GENMASK(num_qgv_points - 1, 0); if (num_psf_gv_points > 0) psf_points = GENMASK(num_psf_gv_points - 1, 0); return ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points); } static bool is_sagv_enabled(struct intel_display *display, u16 points_mask) { return !is_power_of_2(~points_mask & icl_qgv_points_mask(display) & ICL_PCODE_REQ_QGV_PT_MASK); } static int icl_pcode_restrict_qgv_points(struct intel_display *display, u32 points_mask) { int ret; if (DISPLAY_VER(display) >= 14) return 0; /* bspec says to keep retrying for at least 1 ms */ ret = intel_pcode_request(display->drm, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG, points_mask, ICL_PCODE_REP_QGV_MASK | ADLS_PCODE_REP_PSF_MASK, ICL_PCODE_REP_QGV_SAFE | ADLS_PCODE_REP_PSF_SAFE, 1); if (ret < 0) { drm_err(display->drm, "Failed to disable qgv points (0x%x) points: 0x%x\n", ret, points_mask); return ret; } display->sagv.status = is_sagv_enabled(display, points_mask) ? I915_SAGV_ENABLED : I915_SAGV_DISABLED; return 0; } static int mtl_read_qgv_point_info(struct intel_display *display, struct intel_qgv_point *sp, int point) { struct drm_i915_private *i915 = to_i915(display->drm); u32 val, val2; u16 dclk; val = intel_uncore_read(&i915->uncore, MTL_MEM_SS_INFO_QGV_POINT_LOW(point)); val2 = intel_uncore_read(&i915->uncore, MTL_MEM_SS_INFO_QGV_POINT_HIGH(point)); dclk = REG_FIELD_GET(MTL_DCLK_MASK, val); sp->dclk = DIV_ROUND_CLOSEST(16667 * dclk, 1000); sp->t_rp = REG_FIELD_GET(MTL_TRP_MASK, val); sp->t_rcd = REG_FIELD_GET(MTL_TRCD_MASK, val); sp->t_rdpre = REG_FIELD_GET(MTL_TRDPRE_MASK, val2); sp->t_ras = REG_FIELD_GET(MTL_TRAS_MASK, val2); sp->t_rc = sp->t_rp + sp->t_ras; return 0; } static int intel_read_qgv_point_info(struct intel_display *display, struct intel_qgv_point *sp, int point) { if (DISPLAY_VER(display) >= 14) return mtl_read_qgv_point_info(display, sp, point); else if (display->platform.dg1) return dg1_mchbar_read_qgv_point_info(display, sp, point); else return icl_pcode_read_qgv_point_info(display, sp, point); } static int icl_get_qgv_points(struct intel_display *display, const struct dram_info *dram_info, struct intel_qgv_info *qi, bool is_y_tile) { int i, ret; qi->num_points = dram_info->num_qgv_points; qi->num_psf_points = dram_info->num_psf_gv_points; if (DISPLAY_VER(display) >= 14) { switch (dram_info->type) { case INTEL_DRAM_DDR4: qi->t_bl = 4; qi->max_numchannels = 2; qi->channel_width = 64; qi->deinterleave = 2; break; case INTEL_DRAM_DDR5: qi->t_bl = 8; qi->max_numchannels = 4; qi->channel_width = 32; qi->deinterleave = 2; break; case INTEL_DRAM_LPDDR4: case INTEL_DRAM_LPDDR5: qi->t_bl = 16; qi->max_numchannels = 8; qi->channel_width = 16; qi->deinterleave = 4; break; case INTEL_DRAM_GDDR: case INTEL_DRAM_GDDR_ECC: qi->channel_width = 32; break; default: MISSING_CASE(dram_info->type); return -EINVAL; } } else if (DISPLAY_VER(display) >= 12) { switch (dram_info->type) { case INTEL_DRAM_DDR4: qi->t_bl = is_y_tile ? 8 : 4; qi->max_numchannels = 2; qi->channel_width = 64; qi->deinterleave = is_y_tile ? 1 : 2; break; case INTEL_DRAM_DDR5: qi->t_bl = is_y_tile ? 16 : 8; qi->max_numchannels = 4; qi->channel_width = 32; qi->deinterleave = is_y_tile ? 1 : 2; break; case INTEL_DRAM_LPDDR4: if (display->platform.rocketlake) { qi->t_bl = 8; qi->max_numchannels = 4; qi->channel_width = 32; qi->deinterleave = 2; break; } fallthrough; case INTEL_DRAM_LPDDR5: qi->t_bl = 16; qi->max_numchannels = 8; qi->channel_width = 16; qi->deinterleave = is_y_tile ? 2 : 4; break; default: qi->t_bl = 16; qi->max_numchannels = 1; break; } } else if (DISPLAY_VER(display) == 11) { qi->t_bl = dram_info->type == INTEL_DRAM_DDR4 ? 4 : 8; qi->max_numchannels = 1; } if (drm_WARN_ON(display->drm, qi->num_points > ARRAY_SIZE(qi->points))) qi->num_points = ARRAY_SIZE(qi->points); for (i = 0; i < qi->num_points; i++) { struct intel_qgv_point *sp = &qi->points[i]; ret = intel_read_qgv_point_info(display, sp, i); if (ret) { drm_dbg_kms(display->drm, "Could not read QGV %d info\n", i); return ret; } drm_dbg_kms(display->drm, "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n", i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras, sp->t_rcd, sp->t_rc); } if (qi->num_psf_points > 0) { ret = adls_pcode_read_psf_gv_point_info(display, qi->psf_points); if (ret) { drm_err(display->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n"); qi->num_psf_points = 0; } for (i = 0; i < qi->num_psf_points; i++) drm_dbg_kms(display->drm, "PSF GV %d: CLK=%d\n", i, qi->psf_points[i].clk); } return 0; } static int adl_calc_psf_bw(int clk) { /* * clk is multiples of 16.666MHz (100/6) * According to BSpec PSF GV bandwidth is * calculated as BW = 64 * clk * 16.666Mhz */ return DIV_ROUND_CLOSEST(64 * clk * 100, 6); } static int icl_sagv_max_dclk(const struct intel_qgv_info *qi) { u16 dclk = 0; int i; for (i = 0; i < qi->num_points; i++) dclk = max(dclk, qi->points[i].dclk); return dclk; } struct intel_sa_info { u16 displayrtids; u8 deburst, deprogbwlimit, derating; }; static const struct intel_sa_info icl_sa_info = { .deburst = 8, .deprogbwlimit = 25, /* GB/s */ .displayrtids = 128, .derating = 10, }; static const struct intel_sa_info tgl_sa_info = { .deburst = 16, .deprogbwlimit = 34, /* GB/s */ .displayrtids = 256, .derating = 10, }; static const struct intel_sa_info rkl_sa_info = { .deburst = 8, .deprogbwlimit = 20, /* GB/s */ .displayrtids = 128, .derating = 10, }; static const struct intel_sa_info adls_sa_info = { .deburst = 16, .deprogbwlimit = 38, /* GB/s */ .displayrtids = 256, .derating = 10, }; static const struct intel_sa_info adlp_sa_info = { .deburst = 16, .deprogbwlimit = 38, /* GB/s */ .displayrtids = 256, .derating = 20, }; static const struct intel_sa_info mtl_sa_info = { .deburst = 32, .deprogbwlimit = 38, /* GB/s */ .displayrtids = 256, .derating = 10, }; static const struct intel_sa_info xe2_hpd_sa_info = { .derating = 30, .deprogbwlimit = 53, /* Other values not used by simplified algorithm */ }; static const struct intel_sa_info xe2_hpd_ecc_sa_info = { .derating = 45, .deprogbwlimit = 53, /* Other values not used by simplified algorithm */ }; static const struct intel_sa_info xe3lpd_sa_info = { .deburst = 32, .deprogbwlimit = 65, /* GB/s */ .displayrtids = 256, .derating = 10, }; static const struct intel_sa_info xe3lpd_3002_sa_info = { .deburst = 32, .deprogbwlimit = 22, /* GB/s */ .displayrtids = 256, .derating = 10, }; static int icl_get_bw_info(struct intel_display *display, const struct dram_info *dram_info, const struct intel_sa_info *sa) { struct intel_qgv_info qi = {}; bool is_y_tile = true; /* assume y tile may be used */ int num_channels = max_t(u8, 1, dram_info->num_channels); int ipqdepth, ipqdepthpch = 16; int dclk_max; int maxdebw; int num_groups = ARRAY_SIZE(display->bw.max); int i, ret; ret = icl_get_qgv_points(display, dram_info, &qi, is_y_tile); if (ret) { drm_dbg_kms(display->drm, "Failed to get memory subsystem information, ignoring bandwidth limits"); return ret; } dclk_max = icl_sagv_max_dclk(&qi); maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10); ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels); qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2); for (i = 0; i < num_groups; i++) { struct intel_bw_info *bi = &display->bw.max[i]; int clpchgroup; int j; clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i; bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1; bi->num_qgv_points = qi.num_points; bi->num_psf_gv_points = qi.num_psf_points; for (j = 0; j < qi.num_points; j++) { const struct intel_qgv_point *sp = &qi.points[j]; int ct, bw; /* * Max row cycle time * * FIXME what is the logic behind the * assumed burst length? */ ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd + (clpchgroup - 1) * qi.t_bl + sp->t_rdpre); bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct); bi->deratedbw[j] = min(maxdebw, bw * (100 - sa->derating) / 100); drm_dbg_kms(display->drm, "BW%d / QGV %d: num_planes=%d deratedbw=%u\n", i, j, bi->num_planes, bi->deratedbw[j]); } } /* * In case if SAGV is disabled in BIOS, we always get 1 * SAGV point, but we can't send PCode commands to restrict it * as it will fail and pointless anyway. */ if (qi.num_points == 1) display->sagv.status = I915_SAGV_NOT_CONTROLLED; else display->sagv.status = I915_SAGV_ENABLED; return 0; } static int tgl_get_bw_info(struct intel_display *display, const struct dram_info *dram_info, const struct intel_sa_info *sa) { struct intel_qgv_info qi = {}; bool is_y_tile = true; /* assume y tile may be used */ int num_channels = max_t(u8, 1, dram_info->num_channels); int ipqdepth, ipqdepthpch = 16; int dclk_max; int maxdebw, peakbw; int clperchgroup; int num_groups = ARRAY_SIZE(display->bw.max); int i, ret; ret = icl_get_qgv_points(display, dram_info, &qi, is_y_tile); if (ret) { drm_dbg_kms(display->drm, "Failed to get memory subsystem information, ignoring bandwidth limits"); return ret; } if (DISPLAY_VER(display) < 14 && (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5)) num_channels *= 2; qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2); if (num_channels < qi.max_numchannels && DISPLAY_VER(display) >= 12) qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1); if (DISPLAY_VER(display) >= 12 && num_channels > qi.max_numchannels) drm_warn(display->drm, "Number of channels exceeds max number of channels."); if (qi.max_numchannels != 0) num_channels = min_t(u8, num_channels, qi.max_numchannels); dclk_max = icl_sagv_max_dclk(&qi); peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max; maxdebw = min(sa->deprogbwlimit * 1000, peakbw * DEPROGBWPCLIMIT / 100); ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels); /* * clperchgroup = 4kpagespermempage * clperchperblock, * clperchperblock = 8 / num_channels * interleave */ clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave; for (i = 0; i < num_groups; i++) { struct intel_bw_info *bi = &display->bw.max[i]; struct intel_bw_info *bi_next; int clpchgroup; int j; clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i; if (i < num_groups - 1) { bi_next = &display->bw.max[i + 1]; if (clpchgroup < clperchgroup) bi_next->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1; else bi_next->num_planes = 0; } bi->num_qgv_points = qi.num_points; bi->num_psf_gv_points = qi.num_psf_points; for (j = 0; j < qi.num_points; j++) { const struct intel_qgv_point *sp = &qi.points[j]; int ct, bw; /* * Max row cycle time * * FIXME what is the logic behind the * assumed burst length? */ ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd + (clpchgroup - 1) * qi.t_bl + sp->t_rdpre); bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct); bi->deratedbw[j] = min(maxdebw, bw * (100 - sa->derating) / 100); bi->peakbw[j] = DIV_ROUND_CLOSEST(sp->dclk * num_channels * qi.channel_width, 8); drm_dbg_kms(display->drm, "BW%d / QGV %d: num_planes=%d deratedbw=%u peakbw: %u\n", i, j, bi->num_planes, bi->deratedbw[j], bi->peakbw[j]); } for (j = 0; j < qi.num_psf_points; j++) { const struct intel_psf_gv_point *sp = &qi.psf_points[j]; bi->psf_bw[j] = adl_calc_psf_bw(sp->clk); drm_dbg_kms(display->drm, "BW%d / PSF GV %d: num_planes=%d bw=%u\n", i, j, bi->num_planes, bi->psf_bw[j]); } } /* * In case if SAGV is disabled in BIOS, we always get 1 * SAGV point, but we can't send PCode commands to restrict it * as it will fail and pointless anyway. */ if (qi.num_points == 1) display->sagv.status = I915_SAGV_NOT_CONTROLLED; else display->sagv.status = I915_SAGV_ENABLED; return 0; } static void dg2_get_bw_info(struct intel_display *display) { unsigned int deratedbw = display->platform.dg2_g11 ? 38000 : 50000; int num_groups = ARRAY_SIZE(display->bw.max); int i; /* * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth * that doesn't depend on the number of planes enabled. So fill all the * plane group with constant bw information for uniformity with other * platforms. DG2-G10 platforms have a constant 50 GB/s bandwidth, * whereas DG2-G11 platforms have 38 GB/s. */ for (i = 0; i < num_groups; i++) { struct intel_bw_info *bi = &display->bw.max[i]; bi->num_planes = 1; /* Need only one dummy QGV point per group */ bi->num_qgv_points = 1; bi->deratedbw[0] = deratedbw; } display->sagv.status = I915_SAGV_NOT_CONTROLLED; } static int xe2_hpd_get_bw_info(struct intel_display *display, const struct dram_info *dram_info, const struct intel_sa_info *sa) { struct intel_qgv_info qi = {}; int num_channels = dram_info->num_channels; int peakbw, maxdebw; int ret, i; ret = icl_get_qgv_points(display, dram_info, &qi, true); if (ret) { drm_dbg_kms(display->drm, "Failed to get memory subsystem information, ignoring bandwidth limits"); return ret; } peakbw = num_channels * qi.channel_width / 8 * icl_sagv_max_dclk(&qi); maxdebw = min(sa->deprogbwlimit * 1000, peakbw * DEPROGBWPCLIMIT / 10); for (i = 0; i < qi.num_points; i++) { const struct intel_qgv_point *point = &qi.points[i]; int bw = num_channels * (qi.channel_width / 8) * point->dclk; display->bw.max[0].deratedbw[i] = min(maxdebw, (100 - sa->derating) * bw / 100); display->bw.max[0].peakbw[i] = bw; drm_dbg_kms(display->drm, "QGV %d: deratedbw=%u peakbw: %u\n", i, display->bw.max[0].deratedbw[i], display->bw.max[0].peakbw[i]); } /* Bandwidth does not depend on # of planes; set all groups the same */ display->bw.max[0].num_planes = 1; display->bw.max[0].num_qgv_points = qi.num_points; for (i = 1; i < ARRAY_SIZE(display->bw.max); i++) memcpy(&display->bw.max[i], &display->bw.max[0], sizeof(display->bw.max[0])); /* * Xe2_HPD should always have exactly two QGV points representing * battery and plugged-in operation. */ drm_WARN_ON(display->drm, qi.num_points != 2); display->sagv.status = I915_SAGV_ENABLED; return 0; } static unsigned int icl_max_bw_index(struct intel_display *display, int num_planes, int qgv_point) { int i; /* * Let's return max bw for 0 planes */ num_planes = max(1, num_planes); for (i = 0; i < ARRAY_SIZE(display->bw.max); i++) { const struct intel_bw_info *bi = &display->bw.max[i]; /* * Pcode will not expose all QGV points when * SAGV is forced to off/min/med/max. */ if (qgv_point >= bi->num_qgv_points) return UINT_MAX; if (num_planes >= bi->num_planes) return i; } return UINT_MAX; } static unsigned int tgl_max_bw_index(struct intel_display *display, int num_planes, int qgv_point) { int i; /* * Let's return max bw for 0 planes */ num_planes = max(1, num_planes); for (i = ARRAY_SIZE(display->bw.max) - 1; i >= 0; i--) { const struct intel_bw_info *bi = &display->bw.max[i]; /* * Pcode will not expose all QGV points when * SAGV is forced to off/min/med/max. */ if (qgv_point >= bi->num_qgv_points) return UINT_MAX; if (num_planes <= bi->num_planes) return i; } return 0; } static unsigned int adl_psf_bw(struct intel_display *display, int psf_gv_point) { const struct intel_bw_info *bi = &display->bw.max[0]; return bi->psf_bw[psf_gv_point]; } static unsigned int icl_qgv_bw(struct intel_display *display, int num_active_planes, int qgv_point) { unsigned int idx; if (DISPLAY_VER(display) >= 12) idx = tgl_max_bw_index(display, num_active_planes, qgv_point); else idx = icl_max_bw_index(display, num_active_planes, qgv_point); if (idx >= ARRAY_SIZE(display->bw.max)) return 0; return display->bw.max[idx].deratedbw[qgv_point]; } void intel_bw_init_hw(struct intel_display *display) { const struct dram_info *dram_info = intel_dram_info(display->drm); if (!HAS_DISPLAY(display)) return; /* * Starting with Xe3p_LPD, the hardware tells us whether memory has ECC * enabled that would impact display bandwidth. However, so far there * are no instructions in Bspec on how to handle that case. Let's * complain if we ever find such a scenario. */ if (DISPLAY_VER(display) >= 35) drm_WARN_ON(display->drm, dram_info->ecc_impacting_de_bw); if (DISPLAY_VER(display) >= 30) { if (DISPLAY_VERx100(display) == 3002) tgl_get_bw_info(display, dram_info, &xe3lpd_3002_sa_info); else tgl_get_bw_info(display, dram_info, &xe3lpd_sa_info); } else if (DISPLAY_VERx100(display) >= 1401 && display->platform.dgfx) { if (dram_info->type == INTEL_DRAM_GDDR_ECC) xe2_hpd_get_bw_info(display, dram_info, &xe2_hpd_ecc_sa_info); else xe2_hpd_get_bw_info(display, dram_info, &xe2_hpd_sa_info); } else if (DISPLAY_VER(display) >= 14) { tgl_get_bw_info(display, dram_info, &mtl_sa_info); } else if (display->platform.dg2) { dg2_get_bw_info(display); } else if (display->platform.alderlake_p) { tgl_get_bw_info(display, dram_info, &adlp_sa_info); } else if (display->platform.alderlake_s) { tgl_get_bw_info(display, dram_info, &adls_sa_info); } else if (display->platform.rocketlake) { tgl_get_bw_info(display, dram_info, &rkl_sa_info); } else if (DISPLAY_VER(display) == 12) { tgl_get_bw_info(display, dram_info, &tgl_sa_info); } else if (DISPLAY_VER(display) == 11) { icl_get_bw_info(display, dram_info, &icl_sa_info); } } static unsigned int intel_bw_num_active_planes(struct intel_display *display, const struct intel_bw_state *bw_state) { unsigned int num_active_planes = 0; enum pipe pipe; for_each_pipe(display, pipe) num_active_planes += bw_state->num_active_planes[pipe]; return num_active_planes; } static unsigned int intel_bw_data_rate(struct intel_display *display, const struct intel_bw_state *bw_state) { unsigned int data_rate = 0; enum pipe pipe; for_each_pipe(display, pipe) data_rate += bw_state->data_rate[pipe]; if (DISPLAY_VER(display) >= 13 && intel_display_vtd_active(display)) data_rate = DIV_ROUND_UP(data_rate * 105, 100); return data_rate; } struct intel_bw_state *to_intel_bw_state(struct intel_global_state *obj_state) { return container_of(obj_state, struct intel_bw_state, base); } struct intel_bw_state * intel_atomic_get_old_bw_state(struct intel_atomic_state *state) { struct intel_display *display = to_intel_display(state); struct intel_global_state *bw_state; bw_state = intel_atomic_get_old_global_obj_state(state, &display->bw.obj); return to_intel_bw_state(bw_state); } struct intel_bw_state * intel_atomic_get_new_bw_state(struct intel_atomic_state *state) { struct intel_display *display = to_intel_display(state); struct intel_global_state *bw_state; bw_state = intel_atomic_get_new_global_obj_state(state, &display->bw.obj); return to_intel_bw_state(bw_state); } struct intel_bw_state * intel_atomic_get_bw_state(struct intel_atomic_state *state) { struct intel_display *display = to_intel_display(state); struct intel_global_state *bw_state; bw_state = intel_atomic_get_global_obj_state(state, &display->bw.obj); if (IS_ERR(bw_state)) return ERR_CAST(bw_state); return to_intel_bw_state(bw_state); } static unsigned int icl_max_bw_qgv_point_mask(struct intel_display *display, int num_active_planes) { unsigned int num_qgv_points = display->bw.max[0].num_qgv_points; unsigned int max_bw_point = 0; unsigned int max_bw = 0; int i; for (i = 0; i < num_qgv_points; i++) { unsigned int max_data_rate = icl_qgv_bw(display, num_active_planes, i); /* * We need to know which qgv point gives us * maximum bandwidth in order to disable SAGV * if we find that we exceed SAGV block time * with watermarks. By that moment we already * have those, as it is calculated earlier in * intel_atomic_check, */ if (max_data_rate > max_bw) { max_bw_point = BIT(i); max_bw = max_data_rate; } } return max_bw_point; } static u16 icl_prepare_qgv_points_mask(struct intel_display *display, unsigned int qgv_points, unsigned int psf_points) { return ~(ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points)) & icl_qgv_points_mask(display); } static unsigned int icl_max_bw_psf_gv_point_mask(struct intel_display *display) { unsigned int num_psf_gv_points = display->bw.max[0].num_psf_gv_points; unsigned int max_bw_point_mask = 0; unsigned int max_bw = 0; int i; for (i = 0; i < num_psf_gv_points; i++) { unsigned int max_data_rate = adl_psf_bw(display, i); if (max_data_rate > max_bw) { max_bw_point_mask = BIT(i); max_bw = max_data_rate; } else if (max_data_rate == max_bw) { max_bw_point_mask |= BIT(i); } } return max_bw_point_mask; } static void icl_force_disable_sagv(struct intel_display *display, struct intel_bw_state *bw_state) { unsigned int qgv_points = icl_max_bw_qgv_point_mask(display, 0); unsigned int psf_points = icl_max_bw_psf_gv_point_mask(display); bw_state->qgv_points_mask = icl_prepare_qgv_points_mask(display, qgv_points, psf_points); drm_dbg_kms(display->drm, "Forcing SAGV disable: mask 0x%x\n", bw_state->qgv_points_mask); icl_pcode_restrict_qgv_points(display, bw_state->qgv_points_mask); } void icl_sagv_pre_plane_update(struct intel_atomic_state *state) { struct intel_display *display = to_intel_display(state); const struct intel_bw_state *old_bw_state = intel_atomic_get_old_bw_state(state); const struct intel_bw_state *new_bw_state = intel_atomic_get_new_bw_state(state); u16 old_mask, new_mask; if (!new_bw_state) return; old_mask = old_bw_state->qgv_points_mask; new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; if (old_mask == new_mask) return; WARN_ON(!new_bw_state->base.changed); drm_dbg_kms(display->drm, "Restricting QGV points: 0x%x -> 0x%x\n", old_mask, new_mask); /* * Restrict required qgv points before updating the configuration. * According to BSpec we can't mask and unmask qgv points at the same * time. Also masking should be done before updating the configuration * and unmasking afterwards. */ icl_pcode_restrict_qgv_points(display, new_mask); } void icl_sagv_post_plane_update(struct intel_atomic_state *state) { struct intel_display *display = to_intel_display(state); const struct intel_bw_state *old_bw_state = intel_atomic_get_old_bw_state(state); const struct intel_bw_state *new_bw_state = intel_atomic_get_new_bw_state(state); u16 old_mask, new_mask; if (!new_bw_state) return; old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; new_mask = new_bw_state->qgv_points_mask; if (old_mask == new_mask) return; WARN_ON(!new_bw_state->base.changed); drm_dbg_kms(display->drm, "Relaxing QGV points: 0x%x -> 0x%x\n", old_mask, new_mask); /* * Allow required qgv points after updating the configuration. * According to BSpec we can't mask and unmask qgv points at the same * time. Also masking should be done before updating the configuration * and unmasking afterwards. */ icl_pcode_restrict_qgv_points(display, new_mask); } static int mtl_find_qgv_points(struct intel_display *display, unsigned int data_rate, unsigned int num_active_planes, struct intel_bw_state *new_bw_state) { unsigned int best_rate = UINT_MAX; unsigned int num_qgv_points = display->bw.max[0].num_qgv_points; unsigned int qgv_peak_bw = 0; int i; int ret; ret = intel_atomic_lock_global_state(&new_bw_state->base); if (ret) return ret; /* * If SAGV cannot be enabled, disable the pcode SAGV by passing all 1's * for qgv peak bw in PM Demand request. So assign UINT_MAX if SAGV is * not enabled. PM Demand code will clamp the value for the register */ if (!intel_bw_can_enable_sagv(display, new_bw_state)) { new_bw_state->qgv_point_peakbw = U16_MAX; drm_dbg_kms(display->drm, "No SAGV, use UINT_MAX as peak bw."); return 0; } /* * Find the best QGV point by comparing the data_rate with max data rate * offered per plane group */ for (i = 0; i < num_qgv_points; i++) { unsigned int bw_index = tgl_max_bw_index(display, num_active_planes, i); unsigned int max_data_rate; if (bw_index >= ARRAY_SIZE(display->bw.max)) continue; max_data_rate = display->bw.max[bw_index].deratedbw[i]; if (max_data_rate < data_rate) continue; if (max_data_rate - data_rate < best_rate) { best_rate = max_data_rate - data_rate; qgv_peak_bw = display->bw.max[bw_index].peakbw[i]; } drm_dbg_kms(display->drm, "QGV point %d: max bw %d required %d qgv_peak_bw: %d\n", i, max_data_rate, data_rate, qgv_peak_bw); } drm_dbg_kms(display->drm, "Matching peaks QGV bw: %d for required data rate: %d\n", qgv_peak_bw, data_rate); /* * The display configuration cannot be supported if no QGV point * satisfying the required data rate is found */ if (qgv_peak_bw == 0) { drm_dbg_kms(display->drm, "No QGV points for bw %d for display configuration(%d active planes).\n", data_rate, num_active_planes); return -EINVAL; } /* MTL PM DEMAND expects QGV BW parameter in multiples of 100 mbps */ new_bw_state->qgv_point_peakbw = DIV_ROUND_CLOSEST(qgv_peak_bw, 100); return 0; } static int icl_find_qgv_points(struct intel_display *display, unsigned int data_rate, unsigned int num_active_planes, const struct intel_bw_state *old_bw_state, struct intel_bw_state *new_bw_state) { unsigned int num_psf_gv_points = display->bw.max[0].num_psf_gv_points; unsigned int num_qgv_points = display->bw.max[0].num_qgv_points; u16 psf_points = 0; u16 qgv_points = 0; int i; int ret; ret = intel_atomic_lock_global_state(&new_bw_state->base); if (ret) return ret; for (i = 0; i < num_qgv_points; i++) { unsigned int max_data_rate = icl_qgv_bw(display, num_active_planes, i); if (max_data_rate >= data_rate) qgv_points |= BIT(i); drm_dbg_kms(display->drm, "QGV point %d: max bw %d required %d\n", i, max_data_rate, data_rate); } for (i = 0; i < num_psf_gv_points; i++) { unsigned int max_data_rate = adl_psf_bw(display, i); if (max_data_rate >= data_rate) psf_points |= BIT(i); drm_dbg_kms(display->drm, "PSF GV point %d: max bw %d" " required %d\n", i, max_data_rate, data_rate); } /* * BSpec states that we always should have at least one allowed point * left, so if we couldn't - simply reject the configuration for obvious * reasons. */ if (qgv_points == 0) { drm_dbg_kms(display->drm, "No QGV points provide sufficient memory" " bandwidth %d for display configuration(%d active planes).\n", data_rate, num_active_planes); return -EINVAL; } if (num_psf_gv_points > 0 && psf_points == 0) { drm_dbg_kms(display->drm, "No PSF GV points provide sufficient memory" " bandwidth %d for display configuration(%d active planes).\n", data_rate, num_active_planes); return -EINVAL; } /* * Leave only single point with highest bandwidth, if * we can't enable SAGV due to the increased memory latency it may * cause. */ if (!intel_bw_can_enable_sagv(display, new_bw_state)) { qgv_points = icl_max_bw_qgv_point_mask(display, num_active_planes); drm_dbg_kms(display->drm, "No SAGV, using single QGV point mask 0x%x\n", qgv_points); } /* * We store the ones which need to be masked as that is what PCode * actually accepts as a parameter. */ new_bw_state->qgv_points_mask = icl_prepare_qgv_points_mask(display, qgv_points, psf_points); /* * If the actual mask had changed we need to make sure that * the commits are serialized(in case this is a nomodeset, nonblocking) */ if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) { ret = intel_atomic_serialize_global_state(&new_bw_state->base); if (ret) return ret; } return 0; } static int intel_bw_check_qgv_points(struct intel_display *display, const struct intel_bw_state *old_bw_state, struct intel_bw_state *new_bw_state) { unsigned int data_rate = intel_bw_data_rate(display, new_bw_state); unsigned int num_active_planes = intel_bw_num_active_planes(display, new_bw_state); data_rate = DIV_ROUND_UP(data_rate, 1000); if (DISPLAY_VER(display) >= 14) return mtl_find_qgv_points(display, data_rate, num_active_planes, new_bw_state); else return icl_find_qgv_points(display, data_rate, num_active_planes, old_bw_state, new_bw_state); } static int intel_bw_check_data_rate(struct intel_atomic_state *state, bool *changed) { struct intel_display *display = to_intel_display(state); const struct intel_crtc_state *new_crtc_state, *old_crtc_state; struct intel_crtc *crtc; int i; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { unsigned int old_data_rate = intel_crtc_bw_data_rate(old_crtc_state); unsigned int new_data_rate = intel_crtc_bw_data_rate(new_crtc_state); unsigned int old_active_planes = intel_crtc_bw_num_active_planes(old_crtc_state); unsigned int new_active_planes = intel_crtc_bw_num_active_planes(new_crtc_state); struct intel_bw_state *new_bw_state; /* * Avoid locking the bw state when * nothing significant has changed. */ if (old_data_rate == new_data_rate && old_active_planes == new_active_planes) continue; new_bw_state = intel_atomic_get_bw_state(state); if (IS_ERR(new_bw_state)) return PTR_ERR(new_bw_state); new_bw_state->data_rate[crtc->pipe] = new_data_rate; new_bw_state->num_active_planes[crtc->pipe] = new_active_planes; *changed = true; drm_dbg_kms(display->drm, "[CRTC:%d:%s] data rate %u num active planes %u\n", crtc->base.base.id, crtc->base.name, new_bw_state->data_rate[crtc->pipe], new_bw_state->num_active_planes[crtc->pipe]); } return 0; } static int intel_bw_modeset_checks(struct intel_atomic_state *state) { const struct intel_bw_state *old_bw_state; struct intel_bw_state *new_bw_state; int ret; if (!intel_any_crtc_active_changed(state)) return 0; new_bw_state = intel_atomic_get_bw_state(state); if (IS_ERR(new_bw_state)) return PTR_ERR(new_bw_state); old_bw_state = intel_atomic_get_old_bw_state(state); new_bw_state->active_pipes = intel_calc_active_pipes(state, old_bw_state->active_pipes); ret = intel_atomic_lock_global_state(&new_bw_state->base); if (ret) return ret; return 0; } static int intel_bw_check_sagv_mask(struct intel_atomic_state *state) { struct intel_display *display = to_intel_display(state); const struct intel_crtc_state *old_crtc_state; const struct intel_crtc_state *new_crtc_state; const struct intel_bw_state *old_bw_state = NULL; struct intel_bw_state *new_bw_state = NULL; struct intel_crtc *crtc; int ret, i; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (intel_crtc_can_enable_sagv(old_crtc_state) == intel_crtc_can_enable_sagv(new_crtc_state)) continue; new_bw_state = intel_atomic_get_bw_state(state); if (IS_ERR(new_bw_state)) return PTR_ERR(new_bw_state); old_bw_state = intel_atomic_get_old_bw_state(state); if (intel_crtc_can_enable_sagv(new_crtc_state)) new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe); else new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe); } if (!new_bw_state) return 0; if (intel_bw_can_enable_sagv(display, new_bw_state) != intel_bw_can_enable_sagv(display, old_bw_state)) { ret = intel_atomic_serialize_global_state(&new_bw_state->base); if (ret) return ret; } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) { ret = intel_atomic_lock_global_state(&new_bw_state->base); if (ret) return ret; } return 0; } int intel_bw_atomic_check(struct intel_atomic_state *state) { struct intel_display *display = to_intel_display(state); bool changed = false; struct intel_bw_state *new_bw_state; const struct intel_bw_state *old_bw_state; int ret; if (DISPLAY_VER(display) < 9) return 0; ret = intel_bw_modeset_checks(state); if (ret) return ret; ret = intel_bw_check_sagv_mask(state); if (ret) return ret; /* FIXME earlier gens need some checks too */ if (DISPLAY_VER(display) < 11) return 0; ret = intel_bw_check_data_rate(state, &changed); if (ret) return ret; old_bw_state = intel_atomic_get_old_bw_state(state); new_bw_state = intel_atomic_get_new_bw_state(state); if (new_bw_state && intel_bw_can_enable_sagv(display, old_bw_state) != intel_bw_can_enable_sagv(display, new_bw_state)) changed = true; /* * If none of our inputs (data rates, number of active * planes, SAGV yes/no) changed then nothing to do here. */ if (!changed) return 0; ret = intel_bw_check_qgv_points(display, old_bw_state, new_bw_state); if (ret) return ret; return 0; } static void intel_bw_crtc_update(struct intel_bw_state *bw_state, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); bw_state->data_rate[crtc->pipe] = intel_crtc_bw_data_rate(crtc_state); bw_state->num_active_planes[crtc->pipe] = intel_crtc_bw_num_active_planes(crtc_state); drm_dbg_kms(display->drm, "pipe %c data rate %u num active planes %u\n", pipe_name(crtc->pipe), bw_state->data_rate[crtc->pipe], bw_state->num_active_planes[crtc->pipe]); } void intel_bw_update_hw_state(struct intel_display *display) { struct intel_bw_state *bw_state = to_intel_bw_state(display->bw.obj.state); struct intel_crtc *crtc; if (DISPLAY_VER(display) < 9) return; bw_state->active_pipes = 0; bw_state->pipe_sagv_reject = 0; for_each_intel_crtc(display->drm, crtc) { const struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); enum pipe pipe = crtc->pipe; if (crtc_state->hw.active) bw_state->active_pipes |= BIT(pipe); if (DISPLAY_VER(display) >= 11) intel_bw_crtc_update(bw_state, crtc_state); /* initially SAGV has been forced off */ bw_state->pipe_sagv_reject |= BIT(pipe); } } void intel_bw_crtc_disable_noatomic(struct intel_crtc *crtc) { struct intel_display *display = to_intel_display(crtc); struct intel_bw_state *bw_state = to_intel_bw_state(display->bw.obj.state); enum pipe pipe = crtc->pipe; if (DISPLAY_VER(display) < 9) return; bw_state->data_rate[pipe] = 0; bw_state->num_active_planes[pipe] = 0; } static struct intel_global_state * intel_bw_duplicate_state(struct intel_global_obj *obj) { struct intel_bw_state *state; state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); if (!state) return NULL; return &state->base; } static void intel_bw_destroy_state(struct intel_global_obj *obj, struct intel_global_state *state) { kfree(state); } static const struct intel_global_state_funcs intel_bw_funcs = { .atomic_duplicate_state = intel_bw_duplicate_state, .atomic_destroy_state = intel_bw_destroy_state, }; int intel_bw_init(struct intel_display *display) { struct intel_bw_state *state; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; intel_atomic_global_obj_init(display, &display->bw.obj, &state->base, &intel_bw_funcs); /* * Limit this only if we have SAGV. And for Display version 14 onwards * sagv is handled though pmdemand requests */ if (intel_has_sagv(display) && IS_DISPLAY_VER(display, 11, 13)) icl_force_disable_sagv(display, state); return 0; } bool intel_bw_pmdemand_needs_update(struct intel_atomic_state *state) { const struct intel_bw_state *new_bw_state, *old_bw_state; new_bw_state = intel_atomic_get_new_bw_state(state); old_bw_state = intel_atomic_get_old_bw_state(state); if (new_bw_state && new_bw_state->qgv_point_peakbw != old_bw_state->qgv_point_peakbw) return true; return false; } bool intel_bw_can_enable_sagv(struct intel_display *display, const struct intel_bw_state *bw_state) { if (DISPLAY_VER(display) < 11 && bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes)) return false; return bw_state->pipe_sagv_reject == 0; } int intel_bw_qgv_point_peakbw(const struct intel_bw_state *bw_state) { return bw_state->qgv_point_peakbw; }