// SPDX-License-Identifier: GPL-2.0 // Required to retain the original register names used by OpenRM, which are all capital snake case // but are mapped to types. #![allow(non_camel_case_types)] #[macro_use] pub(crate) mod macros; use kernel::prelude::*; use crate::{ falcon::{ DmaTrfCmdSize, FalconCoreRev, FalconCoreRevSubversion, FalconFbifMemType, FalconFbifTarget, FalconModSelAlgo, FalconSecurityModel, PFalcon2Base, PFalconBase, PeregrineCoreSelect, // }, gpu::{ Architecture, Chipset, // }, num::FromSafeCast, }; // PMC register!(NV_PMC_BOOT_0 @ 0x00000000, "Basic revision information about the GPU" { 3:0 minor_revision as u8, "Minor revision of the chip"; 7:4 major_revision as u8, "Major revision of the chip"; 8:8 architecture_1 as u8, "MSB of the architecture"; 23:20 implementation as u8, "Implementation version of the architecture"; 28:24 architecture_0 as u8, "Lower bits of the architecture"; }); impl NV_PMC_BOOT_0 { pub(crate) fn is_older_than_fermi(self) -> bool { // From https://github.com/NVIDIA/open-gpu-doc/tree/master/manuals : const NV_PMC_BOOT_0_ARCHITECTURE_GF100: u8 = 0xc; // Older chips left arch1 zeroed out. That, combined with an arch0 value that is less than // GF100, means "older than Fermi". self.architecture_1() == 0 && self.architecture_0() < NV_PMC_BOOT_0_ARCHITECTURE_GF100 } } register!(NV_PMC_BOOT_42 @ 0x00000a00, "Extended architecture information" { 15:12 minor_revision as u8, "Minor revision of the chip"; 19:16 major_revision as u8, "Major revision of the chip"; 23:20 implementation as u8, "Implementation version of the architecture"; 29:24 architecture as u8 ?=> Architecture, "Architecture value"; }); impl NV_PMC_BOOT_42 { /// Combines `architecture` and `implementation` to obtain a code unique to the chipset. pub(crate) fn chipset(self) -> Result { self.architecture() .map(|arch| { ((arch as u32) << Self::IMPLEMENTATION_RANGE.len()) | u32::from(self.implementation()) }) .and_then(Chipset::try_from) } /// Returns the raw architecture value from the register. fn architecture_raw(self) -> u8 { ((self.0 >> Self::ARCHITECTURE_RANGE.start()) & ((1 << Self::ARCHITECTURE_RANGE.len()) - 1)) as u8 } } impl kernel::fmt::Display for NV_PMC_BOOT_42 { fn fmt(&self, f: &mut kernel::fmt::Formatter<'_>) -> kernel::fmt::Result { write!( f, "boot42 = 0x{:08x} (architecture 0x{:x}, implementation 0x{:x})", self.0, self.architecture_raw(), self.implementation() ) } } // PBUS register!(NV_PBUS_SW_SCRATCH @ 0x00001400[64] {}); register!(NV_PBUS_SW_SCRATCH_0E_FRTS_ERR => NV_PBUS_SW_SCRATCH[0xe], "scratch register 0xe used as FRTS firmware error code" { 31:16 frts_err_code as u16; }); // PFB // The following two registers together hold the physical system memory address that is used by the // GPU to perform sysmembar operations (see `fb::SysmemFlush`). register!(NV_PFB_NISO_FLUSH_SYSMEM_ADDR @ 0x00100c10 { 31:0 adr_39_08 as u32; }); register!(NV_PFB_NISO_FLUSH_SYSMEM_ADDR_HI @ 0x00100c40 { 23:0 adr_63_40 as u32; }); register!(NV_PFB_PRI_MMU_LOCAL_MEMORY_RANGE @ 0x00100ce0 { 3:0 lower_scale as u8; 9:4 lower_mag as u8; 30:30 ecc_mode_enabled as bool; }); register!(NV_PGSP_QUEUE_HEAD @ 0x00110c00 { 31:0 address as u32; }); impl NV_PFB_PRI_MMU_LOCAL_MEMORY_RANGE { /// Returns the usable framebuffer size, in bytes. pub(crate) fn usable_fb_size(self) -> u64 { let size = (u64::from(self.lower_mag()) << u64::from(self.lower_scale())) * u64::from_safe_cast(kernel::sizes::SZ_1M); if self.ecc_mode_enabled() { // Remove the amount of memory reserved for ECC (one per 16 units). size / 16 * 15 } else { size } } } register!(NV_PFB_PRI_MMU_WPR2_ADDR_LO@0x001fa824 { 31:4 lo_val as u32, "Bits 12..40 of the lower (inclusive) bound of the WPR2 region"; }); impl NV_PFB_PRI_MMU_WPR2_ADDR_LO { /// Returns the lower (inclusive) bound of the WPR2 region. pub(crate) fn lower_bound(self) -> u64 { u64::from(self.lo_val()) << 12 } } register!(NV_PFB_PRI_MMU_WPR2_ADDR_HI@0x001fa828 { 31:4 hi_val as u32, "Bits 12..40 of the higher (exclusive) bound of the WPR2 region"; }); impl NV_PFB_PRI_MMU_WPR2_ADDR_HI { /// Returns the higher (exclusive) bound of the WPR2 region. /// /// A value of zero means the WPR2 region is not set. pub(crate) fn higher_bound(self) -> u64 { u64::from(self.hi_val()) << 12 } } // PGC6 register space. // // `GC6` is a GPU low-power state where VRAM is in self-refresh and the GPU is powered down (except // for power rails needed to keep self-refresh working and important registers and hardware // blocks). // // These scratch registers remain powered on even in a low-power state and have a designated group // number. // Boot Sequence Interface (BSI) register used to determine // if GSP reload/resume has completed during the boot process. register!(NV_PGC6_BSI_SECURE_SCRATCH_14 @ 0x001180f8 { 26:26 boot_stage_3_handoff as bool; }); // Privilege level mask register. It dictates whether the host CPU has privilege to access the // `PGC6_AON_SECURE_SCRATCH_GROUP_05` register (which it needs to read GFW_BOOT). register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_PRIV_LEVEL_MASK @ 0x00118128, "Privilege level mask register" { 0:0 read_protection_level0 as bool, "Set after FWSEC lowers its protection level"; }); // OpenRM defines this as a register array, but doesn't specify its size and only uses its first // element. Be conservative until we know the actual size or need to use more registers. register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_05 @ 0x00118234[1] {}); register!( NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_0_GFW_BOOT => NV_PGC6_AON_SECURE_SCRATCH_GROUP_05[0], "Scratch group 05 register 0 used as GFW boot progress indicator" { 7:0 progress as u8, "Progress of GFW boot (0xff means completed)"; } ); impl NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_0_GFW_BOOT { /// Returns `true` if GFW boot is completed. pub(crate) fn completed(self) -> bool { self.progress() == 0xff } } register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_42 @ 0x001183a4 { 31:0 value as u32; }); register!( NV_USABLE_FB_SIZE_IN_MB => NV_PGC6_AON_SECURE_SCRATCH_GROUP_42, "Scratch group 42 register used as framebuffer size" { 31:0 value as u32, "Usable framebuffer size, in megabytes"; } ); impl NV_USABLE_FB_SIZE_IN_MB { /// Returns the usable framebuffer size, in bytes. pub(crate) fn usable_fb_size(self) -> u64 { u64::from(self.value()) * u64::from_safe_cast(kernel::sizes::SZ_1M) } } // PDISP register!(NV_PDISP_VGA_WORKSPACE_BASE @ 0x00625f04 { 3:3 status_valid as bool, "Set if the `addr` field is valid"; 31:8 addr as u32, "VGA workspace base address divided by 0x10000"; }); impl NV_PDISP_VGA_WORKSPACE_BASE { /// Returns the base address of the VGA workspace, or `None` if none exists. pub(crate) fn vga_workspace_addr(self) -> Option { if self.status_valid() { Some(u64::from(self.addr()) << 16) } else { None } } } // FUSE pub(crate) const NV_FUSE_OPT_FPF_SIZE: usize = 16; register!(NV_FUSE_OPT_FPF_NVDEC_UCODE1_VERSION @ 0x00824100[NV_FUSE_OPT_FPF_SIZE] { 15:0 data as u16; }); register!(NV_FUSE_OPT_FPF_SEC2_UCODE1_VERSION @ 0x00824140[NV_FUSE_OPT_FPF_SIZE] { 15:0 data as u16; }); register!(NV_FUSE_OPT_FPF_GSP_UCODE1_VERSION @ 0x008241c0[NV_FUSE_OPT_FPF_SIZE] { 15:0 data as u16; }); // PFALCON register!(NV_PFALCON_FALCON_IRQSCLR @ PFalconBase[0x00000004] { 4:4 halt as bool; 6:6 swgen0 as bool; }); register!(NV_PFALCON_FALCON_MAILBOX0 @ PFalconBase[0x00000040] { 31:0 value as u32; }); register!(NV_PFALCON_FALCON_MAILBOX1 @ PFalconBase[0x00000044] { 31:0 value as u32; }); // Used to store version information about the firmware running // on the Falcon processor. register!(NV_PFALCON_FALCON_OS @ PFalconBase[0x00000080] { 31:0 value as u32; }); register!(NV_PFALCON_FALCON_RM @ PFalconBase[0x00000084] { 31:0 value as u32; }); register!(NV_PFALCON_FALCON_HWCFG2 @ PFalconBase[0x000000f4] { 10:10 riscv as bool; 12:12 mem_scrubbing as bool, "Set to 0 after memory scrubbing is completed"; 31:31 reset_ready as bool, "Signal indicating that reset is completed (GA102+)"; }); impl NV_PFALCON_FALCON_HWCFG2 { /// Returns `true` if memory scrubbing is completed. pub(crate) fn mem_scrubbing_done(self) -> bool { !self.mem_scrubbing() } } register!(NV_PFALCON_FALCON_CPUCTL @ PFalconBase[0x00000100] { 1:1 startcpu as bool; 4:4 halted as bool; 6:6 alias_en as bool; }); register!(NV_PFALCON_FALCON_BOOTVEC @ PFalconBase[0x00000104] { 31:0 value as u32; }); register!(NV_PFALCON_FALCON_DMACTL @ PFalconBase[0x0000010c] { 0:0 require_ctx as bool; 1:1 dmem_scrubbing as bool; 2:2 imem_scrubbing as bool; 6:3 dmaq_num as u8; 7:7 secure_stat as bool; }); register!(NV_PFALCON_FALCON_DMATRFBASE @ PFalconBase[0x00000110] { 31:0 base as u32; }); register!(NV_PFALCON_FALCON_DMATRFMOFFS @ PFalconBase[0x00000114] { 23:0 offs as u32; }); register!(NV_PFALCON_FALCON_DMATRFCMD @ PFalconBase[0x00000118] { 0:0 full as bool; 1:1 idle as bool; 3:2 sec as u8; 4:4 imem as bool; 5:5 is_write as bool; 10:8 size as u8 ?=> DmaTrfCmdSize; 14:12 ctxdma as u8; 16:16 set_dmtag as u8; }); register!(NV_PFALCON_FALCON_DMATRFFBOFFS @ PFalconBase[0x0000011c] { 31:0 offs as u32; }); register!(NV_PFALCON_FALCON_DMATRFBASE1 @ PFalconBase[0x00000128] { 8:0 base as u16; }); register!(NV_PFALCON_FALCON_HWCFG1 @ PFalconBase[0x0000012c] { 3:0 core_rev as u8 ?=> FalconCoreRev, "Core revision"; 5:4 security_model as u8 ?=> FalconSecurityModel, "Security model"; 7:6 core_rev_subversion as u8 ?=> FalconCoreRevSubversion, "Core revision subversion"; }); register!(NV_PFALCON_FALCON_CPUCTL_ALIAS @ PFalconBase[0x00000130] { 1:1 startcpu as bool; }); // Actually known as `NV_PSEC_FALCON_ENGINE` and `NV_PGSP_FALCON_ENGINE` depending on the falcon // instance. register!(NV_PFALCON_FALCON_ENGINE @ PFalconBase[0x000003c0] { 0:0 reset as bool; }); register!(NV_PFALCON_FBIF_TRANSCFG @ PFalconBase[0x00000600[8]] { 1:0 target as u8 ?=> FalconFbifTarget; 2:2 mem_type as bool => FalconFbifMemType; }); register!(NV_PFALCON_FBIF_CTL @ PFalconBase[0x00000624] { 7:7 allow_phys_no_ctx as bool; }); /* PFALCON2 */ register!(NV_PFALCON2_FALCON_MOD_SEL @ PFalcon2Base[0x00000180] { 7:0 algo as u8 ?=> FalconModSelAlgo; }); register!(NV_PFALCON2_FALCON_BROM_CURR_UCODE_ID @ PFalcon2Base[0x00000198] { 7:0 ucode_id as u8; }); register!(NV_PFALCON2_FALCON_BROM_ENGIDMASK @ PFalcon2Base[0x0000019c] { 31:0 value as u32; }); // OpenRM defines this as a register array, but doesn't specify its size and only uses its first // element. Be conservative until we know the actual size or need to use more registers. register!(NV_PFALCON2_FALCON_BROM_PARAADDR @ PFalcon2Base[0x00000210[1]] { 31:0 value as u32; }); // PRISCV register!(NV_PRISCV_RISCV_CPUCTL @ PFalcon2Base[0x00000388] { 0:0 halted as bool; 7:7 active_stat as bool; }); register!(NV_PRISCV_RISCV_BCR_CTRL @ PFalcon2Base[0x00000668] { 0:0 valid as bool; 4:4 core_select as bool => PeregrineCoreSelect; 8:8 br_fetch as bool; }); // The modules below provide registers that are not identical on all supported chips. They should // only be used in HAL modules. pub(crate) mod gm107 { // FUSE register!(NV_FUSE_STATUS_OPT_DISPLAY @ 0x00021c04 { 0:0 display_disabled as bool; }); } pub(crate) mod ga100 { // FUSE register!(NV_FUSE_STATUS_OPT_DISPLAY @ 0x00820c04 { 0:0 display_disabled as bool; }); }