1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
// SPDX-License-Identifier: GPL-2.0
use core::ops::Range;
use kernel::{
device,
prelude::*,
ptr::{
Alignable,
Alignment, //
},
sizes::*,
sync::aref::ARef, //
};
use crate::{
dma::DmaObject,
driver::Bar0,
firmware::gsp::GspFirmware,
gpu::Chipset,
gsp,
num::{
usize_as_u64,
FromSafeCast, //
},
regs,
};
mod hal;
/// Type holding the sysmem flush memory page, a page of memory to be written into the
/// `NV_PFB_NISO_FLUSH_SYSMEM_ADDR*` registers and used to maintain memory coherency.
///
/// A system memory page is required for `sysmembar`, which is a GPU-initiated hardware
/// memory-barrier operation that flushes all pending GPU-side memory writes that were done through
/// PCIE to system memory. It is required for falcons to be reset as the reset operation involves a
/// reset handshake. When the falcon acknowledges a reset, it writes into system memory. To ensure
/// this write is visible to the host and prevent driver timeouts, the falcon must perform a
/// sysmembar operation to flush its writes.
///
/// Because of this, the sysmem flush memory page must be registered as early as possible during
/// driver initialization, and before any falcon is reset.
///
/// Users are responsible for manually calling [`Self::unregister`] before dropping this object,
/// otherwise the GPU might still use it even after it has been freed.
pub(crate) struct SysmemFlush {
/// Chipset we are operating on.
chipset: Chipset,
device: ARef<device::Device>,
/// Keep the page alive as long as we need it.
page: DmaObject,
}
impl SysmemFlush {
/// Allocate a memory page and register it as the sysmem flush page.
pub(crate) fn register(
dev: &device::Device<device::Bound>,
bar: &Bar0,
chipset: Chipset,
) -> Result<Self> {
let page = DmaObject::new(dev, kernel::page::PAGE_SIZE)?;
hal::fb_hal(chipset).write_sysmem_flush_page(bar, page.dma_handle())?;
Ok(Self {
chipset,
device: dev.into(),
page,
})
}
/// Unregister the managed sysmem flush page.
///
/// In order to gracefully tear down the GPU, users must make sure to call this method before
/// dropping the object.
pub(crate) fn unregister(&self, bar: &Bar0) {
let hal = hal::fb_hal(self.chipset);
if hal.read_sysmem_flush_page(bar) == self.page.dma_handle() {
let _ = hal.write_sysmem_flush_page(bar, 0).inspect_err(|e| {
dev_warn!(
&self.device,
"failed to unregister sysmem flush page: {:?}",
e
)
});
} else {
// Another page has been registered after us for some reason - warn as this is a bug.
dev_warn!(
&self.device,
"attempt to unregister a sysmem flush page that is not active\n"
);
}
}
}
/// Layout of the GPU framebuffer memory.
///
/// Contains ranges of GPU memory reserved for a given purpose during the GSP boot process.
#[derive(Debug)]
pub(crate) struct FbLayout {
/// Range of the framebuffer. Starts at `0`.
pub(crate) fb: Range<u64>,
/// VGA workspace, small area of reserved memory at the end of the framebuffer.
pub(crate) vga_workspace: Range<u64>,
/// FRTS range.
pub(crate) frts: Range<u64>,
/// Memory area containing the GSP bootloader image.
pub(crate) boot: Range<u64>,
/// Memory area containing the GSP firmware image.
pub(crate) elf: Range<u64>,
/// WPR2 heap.
pub(crate) wpr2_heap: Range<u64>,
/// WPR2 region range, starting with an instance of `GspFwWprMeta`.
pub(crate) wpr2: Range<u64>,
pub(crate) heap: Range<u64>,
pub(crate) vf_partition_count: u8,
}
impl FbLayout {
/// Computes the FB layout for `chipset` required to run the `gsp_fw` GSP firmware.
pub(crate) fn new(chipset: Chipset, bar: &Bar0, gsp_fw: &GspFirmware) -> Result<Self> {
let hal = hal::fb_hal(chipset);
let fb = {
let fb_size = hal.vidmem_size(bar);
0..fb_size
};
let vga_workspace = {
let vga_base = {
const NV_PRAMIN_SIZE: u64 = usize_as_u64(SZ_1M);
let base = fb.end - NV_PRAMIN_SIZE;
if hal.supports_display(bar) {
match regs::NV_PDISP_VGA_WORKSPACE_BASE::read(bar).vga_workspace_addr() {
Some(addr) => {
if addr < base {
const VBIOS_WORKSPACE_SIZE: u64 = usize_as_u64(SZ_128K);
// Point workspace address to end of framebuffer.
fb.end - VBIOS_WORKSPACE_SIZE
} else {
addr
}
}
None => base,
}
} else {
base
}
};
vga_base..fb.end
};
let frts = {
const FRTS_DOWN_ALIGN: Alignment = Alignment::new::<SZ_128K>();
const FRTS_SIZE: u64 = usize_as_u64(SZ_1M);
let frts_base = vga_workspace.start.align_down(FRTS_DOWN_ALIGN) - FRTS_SIZE;
frts_base..frts_base + FRTS_SIZE
};
let boot = {
const BOOTLOADER_DOWN_ALIGN: Alignment = Alignment::new::<SZ_4K>();
let bootloader_size = u64::from_safe_cast(gsp_fw.bootloader.ucode.size());
let bootloader_base = (frts.start - bootloader_size).align_down(BOOTLOADER_DOWN_ALIGN);
bootloader_base..bootloader_base + bootloader_size
};
let elf = {
const ELF_DOWN_ALIGN: Alignment = Alignment::new::<SZ_64K>();
let elf_size = u64::from_safe_cast(gsp_fw.size);
let elf_addr = (boot.start - elf_size).align_down(ELF_DOWN_ALIGN);
elf_addr..elf_addr + elf_size
};
let wpr2_heap = {
const WPR2_HEAP_DOWN_ALIGN: Alignment = Alignment::new::<SZ_1M>();
let wpr2_heap_size =
gsp::LibosParams::from_chipset(chipset).wpr_heap_size(chipset, fb.end);
let wpr2_heap_addr = (elf.start - wpr2_heap_size).align_down(WPR2_HEAP_DOWN_ALIGN);
wpr2_heap_addr..(elf.start).align_down(WPR2_HEAP_DOWN_ALIGN)
};
let wpr2 = {
const WPR2_DOWN_ALIGN: Alignment = Alignment::new::<SZ_1M>();
let wpr2_addr = (wpr2_heap.start - u64::from_safe_cast(size_of::<gsp::GspFwWprMeta>()))
.align_down(WPR2_DOWN_ALIGN);
wpr2_addr..frts.end
};
let heap = {
const HEAP_SIZE: u64 = usize_as_u64(SZ_1M);
wpr2.start - HEAP_SIZE..wpr2.start
};
Ok(Self {
fb,
vga_workspace,
frts,
boot,
elf,
wpr2_heap,
wpr2,
heap,
vf_partition_count: 0,
})
}
}
|