1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
// SPDX-License-Identifier: GPL-2.0
//! `register!` macro to define register layout and accessors.
//!
//! A single register typically includes several fields, which are accessed through a combination
//! of bit-shift and mask operations that introduce a class of potential mistakes, notably because
//! not all possible field values are necessarily valid.
//!
//! The `register!` macro in this module provides an intuitive and readable syntax for defining a
//! dedicated type for each register. Each such type comes with its own field accessors that can
//! return an error if a field's value is invalid. Please look at the [`bitfield`] macro for the
//! complete syntax of fields definitions.
/// Trait providing a base address to be added to the offset of a relative register to obtain
/// its actual offset.
///
/// The `T` generic argument is used to distinguish which base to use, in case a type provides
/// several bases. It is given to the `register!` macro to restrict the use of the register to
/// implementors of this particular variant.
pub(crate) trait RegisterBase<T> {
const BASE: usize;
}
/// Defines a dedicated type for a register with an absolute offset, including getter and setter
/// methods for its fields and methods to read and write it from an `Io` region.
///
/// Example:
///
/// ```no_run
/// register!(BOOT_0 @ 0x00000100, "Basic revision information about the GPU" {
/// 3:0 minor_revision as u8, "Minor revision of the chip";
/// 7:4 major_revision as u8, "Major revision of the chip";
/// 28:20 chipset as u32 ?=> Chipset, "Chipset model";
/// });
/// ```
///
/// This defines a `BOOT_0` type which can be read or written from offset `0x100` of an `Io`
/// region. It is composed of 3 fields, for instance `minor_revision` is made of the 4 least
/// significant bits of the register. Each field can be accessed and modified using accessor
/// methods:
///
/// ```no_run
/// // Read from the register's defined offset (0x100).
/// let boot0 = BOOT_0::read(&bar);
/// pr_info!("chip revision: {}.{}", boot0.major_revision(), boot0.minor_revision());
///
/// // `Chipset::try_from` is called with the value of the `chipset` field and returns an
/// // error if it is invalid.
/// let chipset = boot0.chipset()?;
///
/// // Update some fields and write the value back.
/// boot0.set_major_revision(3).set_minor_revision(10).write(&bar);
///
/// // Or, just read and update the register in a single step:
/// BOOT_0::update(&bar, |r| r.set_major_revision(3).set_minor_revision(10));
/// ```
///
/// The documentation strings are optional. If present, they will be added to the type's
/// definition, or the field getter and setter methods they are attached to.
///
/// It is also possible to create a alias register by using the `=> ALIAS` syntax. This is useful
/// for cases where a register's interpretation depends on the context:
///
/// ```no_run
/// register!(SCRATCH @ 0x00000200, "Scratch register" {
/// 31:0 value as u32, "Raw value";
/// });
///
/// register!(SCRATCH_BOOT_STATUS => SCRATCH, "Boot status of the firmware" {
/// 0:0 completed as bool, "Whether the firmware has completed booting";
/// });
/// ```
///
/// In this example, `SCRATCH_0_BOOT_STATUS` uses the same I/O address as `SCRATCH`, while also
/// providing its own `completed` field.
///
/// ## Relative registers
///
/// A register can be defined as being accessible from a fixed offset of a provided base. For
/// instance, imagine the following I/O space:
///
/// ```text
/// +-----------------------------+
/// | ... |
/// | |
/// 0x100--->+------------CPU0-------------+
/// | |
/// 0x110--->+-----------------------------+
/// | CPU_CTL |
/// +-----------------------------+
/// | ... |
/// | |
/// | |
/// 0x200--->+------------CPU1-------------+
/// | |
/// 0x210--->+-----------------------------+
/// | CPU_CTL |
/// +-----------------------------+
/// | ... |
/// +-----------------------------+
/// ```
///
/// `CPU0` and `CPU1` both have a `CPU_CTL` register that starts at offset `0x10` of their I/O
/// space segment. Since both instances of `CPU_CTL` share the same layout, we don't want to define
/// them twice and would prefer a way to select which one to use from a single definition
///
/// This can be done using the `Base[Offset]` syntax when specifying the register's address.
///
/// `Base` is an arbitrary type (typically a ZST) to be used as a generic parameter of the
/// [`RegisterBase`] trait to provide the base as a constant, i.e. each type providing a base for
/// this register needs to implement `RegisterBase<Base>`. Here is the above example translated
/// into code:
///
/// ```no_run
/// // Type used to identify the base.
/// pub(crate) struct CpuCtlBase;
///
/// // ZST describing `CPU0`.
/// struct Cpu0;
/// impl RegisterBase<CpuCtlBase> for Cpu0 {
/// const BASE: usize = 0x100;
/// }
/// // Singleton of `CPU0` used to identify it.
/// const CPU0: Cpu0 = Cpu0;
///
/// // ZST describing `CPU1`.
/// struct Cpu1;
/// impl RegisterBase<CpuCtlBase> for Cpu1 {
/// const BASE: usize = 0x200;
/// }
/// // Singleton of `CPU1` used to identify it.
/// const CPU1: Cpu1 = Cpu1;
///
/// // This makes `CPU_CTL` accessible from all implementors of `RegisterBase<CpuCtlBase>`.
/// register!(CPU_CTL @ CpuCtlBase[0x10], "CPU core control" {
/// 0:0 start as bool, "Start the CPU core";
/// });
///
/// // The `read`, `write` and `update` methods of relative registers take an extra `base` argument
/// // that is used to resolve its final address by adding its `BASE` to the offset of the
/// // register.
///
/// // Start `CPU0`.
/// CPU_CTL::update(bar, &CPU0, |r| r.set_start(true));
///
/// // Start `CPU1`.
/// CPU_CTL::update(bar, &CPU1, |r| r.set_start(true));
///
/// // Aliases can also be defined for relative register.
/// register!(CPU_CTL_ALIAS => CpuCtlBase[CPU_CTL], "Alias to CPU core control" {
/// 1:1 alias_start as bool, "Start the aliased CPU core";
/// });
///
/// // Start the aliased `CPU0`.
/// CPU_CTL_ALIAS::update(bar, &CPU0, |r| r.set_alias_start(true));
/// ```
///
/// ## Arrays of registers
///
/// Some I/O areas contain consecutive values that can be interpreted in the same way. These areas
/// can be defined as an array of identical registers, allowing them to be accessed by index with
/// compile-time or runtime bound checking. Simply define their address as `Address[Size]`, and add
/// an `idx` parameter to their `read`, `write` and `update` methods:
///
/// ```no_run
/// # fn no_run() -> Result<(), Error> {
/// # fn get_scratch_idx() -> usize {
/// # 0x15
/// # }
/// // Array of 64 consecutive registers with the same layout starting at offset `0x80`.
/// register!(SCRATCH @ 0x00000080[64], "Scratch registers" {
/// 31:0 value as u32;
/// });
///
/// // Read scratch register 0, i.e. I/O address `0x80`.
/// let scratch_0 = SCRATCH::read(bar, 0).value();
/// // Read scratch register 15, i.e. I/O address `0x80 + (15 * 4)`.
/// let scratch_15 = SCRATCH::read(bar, 15).value();
///
/// // This is out of bounds and won't build.
/// // let scratch_128 = SCRATCH::read(bar, 128).value();
///
/// // Runtime-obtained array index.
/// let scratch_idx = get_scratch_idx();
/// // Access on a runtime index returns an error if it is out-of-bounds.
/// let some_scratch = SCRATCH::try_read(bar, scratch_idx)?.value();
///
/// // Alias to a particular register in an array.
/// // Here `SCRATCH[8]` is used to convey the firmware exit code.
/// register!(FIRMWARE_STATUS => SCRATCH[8], "Firmware exit status code" {
/// 7:0 status as u8;
/// });
///
/// let status = FIRMWARE_STATUS::read(bar).status();
///
/// // Non-contiguous register arrays can be defined by adding a stride parameter.
/// // Here, each of the 16 registers of the array are separated by 8 bytes, meaning that the
/// // registers of the two declarations below are interleaved.
/// register!(SCRATCH_INTERLEAVED_0 @ 0x000000c0[16 ; 8], "Scratch registers bank 0" {
/// 31:0 value as u32;
/// });
/// register!(SCRATCH_INTERLEAVED_1 @ 0x000000c4[16 ; 8], "Scratch registers bank 1" {
/// 31:0 value as u32;
/// });
/// # Ok(())
/// # }
/// ```
///
/// ## Relative arrays of registers
///
/// Combining the two features described in the sections above, arrays of registers accessible from
/// a base can also be defined:
///
/// ```no_run
/// # fn no_run() -> Result<(), Error> {
/// # fn get_scratch_idx() -> usize {
/// # 0x15
/// # }
/// // Type used as parameter of `RegisterBase` to specify the base.
/// pub(crate) struct CpuCtlBase;
///
/// // ZST describing `CPU0`.
/// struct Cpu0;
/// impl RegisterBase<CpuCtlBase> for Cpu0 {
/// const BASE: usize = 0x100;
/// }
/// // Singleton of `CPU0` used to identify it.
/// const CPU0: Cpu0 = Cpu0;
///
/// // ZST describing `CPU1`.
/// struct Cpu1;
/// impl RegisterBase<CpuCtlBase> for Cpu1 {
/// const BASE: usize = 0x200;
/// }
/// // Singleton of `CPU1` used to identify it.
/// const CPU1: Cpu1 = Cpu1;
///
/// // 64 per-cpu scratch registers, arranged as an contiguous array.
/// register!(CPU_SCRATCH @ CpuCtlBase[0x00000080[64]], "Per-CPU scratch registers" {
/// 31:0 value as u32;
/// });
///
/// let cpu0_scratch_0 = CPU_SCRATCH::read(bar, &Cpu0, 0).value();
/// let cpu1_scratch_15 = CPU_SCRATCH::read(bar, &Cpu1, 15).value();
///
/// // This won't build.
/// // let cpu0_scratch_128 = CPU_SCRATCH::read(bar, &Cpu0, 128).value();
///
/// // Runtime-obtained array index.
/// let scratch_idx = get_scratch_idx();
/// // Access on a runtime value returns an error if it is out-of-bounds.
/// let cpu0_some_scratch = CPU_SCRATCH::try_read(bar, &Cpu0, scratch_idx)?.value();
///
/// // `SCRATCH[8]` is used to convey the firmware exit code.
/// register!(CPU_FIRMWARE_STATUS => CpuCtlBase[CPU_SCRATCH[8]],
/// "Per-CPU firmware exit status code" {
/// 7:0 status as u8;
/// });
///
/// let cpu0_status = CPU_FIRMWARE_STATUS::read(bar, &Cpu0).status();
///
/// // Non-contiguous register arrays can be defined by adding a stride parameter.
/// // Here, each of the 16 registers of the array are separated by 8 bytes, meaning that the
/// // registers of the two declarations below are interleaved.
/// register!(CPU_SCRATCH_INTERLEAVED_0 @ CpuCtlBase[0x00000d00[16 ; 8]],
/// "Scratch registers bank 0" {
/// 31:0 value as u32;
/// });
/// register!(CPU_SCRATCH_INTERLEAVED_1 @ CpuCtlBase[0x00000d04[16 ; 8]],
/// "Scratch registers bank 1" {
/// 31:0 value as u32;
/// });
/// # Ok(())
/// # }
/// ```
macro_rules! register {
// Creates a register at a fixed offset of the MMIO space.
($name:ident @ $offset:literal $(, $comment:literal)? { $($fields:tt)* } ) => {
bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } );
register!(@io_fixed $name @ $offset);
};
// Creates an alias register of fixed offset register `alias` with its own fields.
($name:ident => $alias:ident $(, $comment:literal)? { $($fields:tt)* } ) => {
bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } );
register!(@io_fixed $name @ $alias::OFFSET);
};
// Creates a register at a relative offset from a base address provider.
($name:ident @ $base:ty [ $offset:literal ] $(, $comment:literal)? { $($fields:tt)* } ) => {
bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } );
register!(@io_relative $name @ $base [ $offset ]);
};
// Creates an alias register of relative offset register `alias` with its own fields.
($name:ident => $base:ty [ $alias:ident ] $(, $comment:literal)? { $($fields:tt)* }) => {
bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } );
register!(@io_relative $name @ $base [ $alias::OFFSET ]);
};
// Creates an array of registers at a fixed offset of the MMIO space.
(
$name:ident @ $offset:literal [ $size:expr ; $stride:expr ] $(, $comment:literal)? {
$($fields:tt)*
}
) => {
static_assert!(::core::mem::size_of::<u32>() <= $stride);
bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } );
register!(@io_array $name @ $offset [ $size ; $stride ]);
};
// Shortcut for contiguous array of registers (stride == size of element).
(
$name:ident @ $offset:literal [ $size:expr ] $(, $comment:literal)? {
$($fields:tt)*
}
) => {
register!($name @ $offset [ $size ; ::core::mem::size_of::<u32>() ] $(, $comment)? {
$($fields)*
} );
};
// Creates an array of registers at a relative offset from a base address provider.
(
$name:ident @ $base:ty [ $offset:literal [ $size:expr ; $stride:expr ] ]
$(, $comment:literal)? { $($fields:tt)* }
) => {
static_assert!(::core::mem::size_of::<u32>() <= $stride);
bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } );
register!(@io_relative_array $name @ $base [ $offset [ $size ; $stride ] ]);
};
// Shortcut for contiguous array of relative registers (stride == size of element).
(
$name:ident @ $base:ty [ $offset:literal [ $size:expr ] ] $(, $comment:literal)? {
$($fields:tt)*
}
) => {
register!($name @ $base [ $offset [ $size ; ::core::mem::size_of::<u32>() ] ]
$(, $comment)? { $($fields)* } );
};
// Creates an alias of register `idx` of relative array of registers `alias` with its own
// fields.
(
$name:ident => $base:ty [ $alias:ident [ $idx:expr ] ] $(, $comment:literal)? {
$($fields:tt)*
}
) => {
static_assert!($idx < $alias::SIZE);
bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } );
register!(@io_relative $name @ $base [ $alias::OFFSET + $idx * $alias::STRIDE ] );
};
// Creates an alias of register `idx` of array of registers `alias` with its own fields.
// This rule belongs to the (non-relative) register arrays set, but needs to be put last
// to avoid it being interpreted in place of the relative register array alias rule.
($name:ident => $alias:ident [ $idx:expr ] $(, $comment:literal)? { $($fields:tt)* }) => {
static_assert!($idx < $alias::SIZE);
bitfield!(pub(crate) struct $name(u32) $(, $comment)? { $($fields)* } );
register!(@io_fixed $name @ $alias::OFFSET + $idx * $alias::STRIDE );
};
// Generates the IO accessors for a fixed offset register.
(@io_fixed $name:ident @ $offset:expr) => {
#[allow(dead_code)]
impl $name {
pub(crate) const OFFSET: usize = $offset;
/// Read the register from its address in `io`.
#[inline(always)]
pub(crate) fn read<const SIZE: usize, T>(io: &T) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
Self(io.read32($offset))
}
/// Write the value contained in `self` to the register address in `io`.
#[inline(always)]
pub(crate) fn write<const SIZE: usize, T>(self, io: &T) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
io.write32(self.0, $offset)
}
/// Read the register from its address in `io` and run `f` on its value to obtain a new
/// value to write back.
#[inline(always)]
pub(crate) fn update<const SIZE: usize, T, F>(
io: &T,
f: F,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::read(io));
reg.write(io);
}
}
};
// Generates the IO accessors for a relative offset register.
(@io_relative $name:ident @ $base:ty [ $offset:expr ]) => {
#[allow(dead_code)]
impl $name {
pub(crate) const OFFSET: usize = $offset;
/// Read the register from `io`, using the base address provided by `base` and adding
/// the register's offset to it.
#[inline(always)]
pub(crate) fn read<const SIZE: usize, T, B>(
io: &T,
#[allow(unused_variables)]
base: &B,
) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
{
const OFFSET: usize = $name::OFFSET;
let value = io.read32(
<B as crate::regs::macros::RegisterBase<$base>>::BASE + OFFSET
);
Self(value)
}
/// Write the value contained in `self` to `io`, using the base address provided by
/// `base` and adding the register's offset to it.
#[inline(always)]
pub(crate) fn write<const SIZE: usize, T, B>(
self,
io: &T,
#[allow(unused_variables)]
base: &B,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
{
const OFFSET: usize = $name::OFFSET;
io.write32(
self.0,
<B as crate::regs::macros::RegisterBase<$base>>::BASE + OFFSET
);
}
/// Read the register from `io`, using the base address provided by `base` and adding
/// the register's offset to it, then run `f` on its value to obtain a new value to
/// write back.
#[inline(always)]
pub(crate) fn update<const SIZE: usize, T, B, F>(
io: &T,
base: &B,
f: F,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::read(io, base));
reg.write(io, base);
}
}
};
// Generates the IO accessors for an array of registers.
(@io_array $name:ident @ $offset:literal [ $size:expr ; $stride:expr ]) => {
#[allow(dead_code)]
impl $name {
pub(crate) const OFFSET: usize = $offset;
pub(crate) const SIZE: usize = $size;
pub(crate) const STRIDE: usize = $stride;
/// Read the array register at index `idx` from its address in `io`.
#[inline(always)]
pub(crate) fn read<const SIZE: usize, T>(
io: &T,
idx: usize,
) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
build_assert!(idx < Self::SIZE);
let offset = Self::OFFSET + (idx * Self::STRIDE);
let value = io.read32(offset);
Self(value)
}
/// Write the value contained in `self` to the array register with index `idx` in `io`.
#[inline(always)]
pub(crate) fn write<const SIZE: usize, T>(
self,
io: &T,
idx: usize
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
build_assert!(idx < Self::SIZE);
let offset = Self::OFFSET + (idx * Self::STRIDE);
io.write32(self.0, offset);
}
/// Read the array register at index `idx` in `io` and run `f` on its value to obtain a
/// new value to write back.
#[inline(always)]
pub(crate) fn update<const SIZE: usize, T, F>(
io: &T,
idx: usize,
f: F,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::read(io, idx));
reg.write(io, idx);
}
/// Read the array register at index `idx` from its address in `io`.
///
/// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
/// access was out-of-bounds.
#[inline(always)]
pub(crate) fn try_read<const SIZE: usize, T>(
io: &T,
idx: usize,
) -> ::kernel::error::Result<Self> where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
if idx < Self::SIZE {
Ok(Self::read(io, idx))
} else {
Err(EINVAL)
}
}
/// Write the value contained in `self` to the array register with index `idx` in `io`.
///
/// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
/// access was out-of-bounds.
#[inline(always)]
pub(crate) fn try_write<const SIZE: usize, T>(
self,
io: &T,
idx: usize,
) -> ::kernel::error::Result where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
if idx < Self::SIZE {
Ok(self.write(io, idx))
} else {
Err(EINVAL)
}
}
/// Read the array register at index `idx` in `io` and run `f` on its value to obtain a
/// new value to write back.
///
/// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
/// access was out-of-bounds.
#[inline(always)]
pub(crate) fn try_update<const SIZE: usize, T, F>(
io: &T,
idx: usize,
f: F,
) -> ::kernel::error::Result where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
F: ::core::ops::FnOnce(Self) -> Self,
{
if idx < Self::SIZE {
Ok(Self::update(io, idx, f))
} else {
Err(EINVAL)
}
}
}
};
// Generates the IO accessors for an array of relative registers.
(
@io_relative_array $name:ident @ $base:ty
[ $offset:literal [ $size:expr ; $stride:expr ] ]
) => {
#[allow(dead_code)]
impl $name {
pub(crate) const OFFSET: usize = $offset;
pub(crate) const SIZE: usize = $size;
pub(crate) const STRIDE: usize = $stride;
/// Read the array register at index `idx` from `io`, using the base address provided
/// by `base` and adding the register's offset to it.
#[inline(always)]
pub(crate) fn read<const SIZE: usize, T, B>(
io: &T,
#[allow(unused_variables)]
base: &B,
idx: usize,
) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
{
build_assert!(idx < Self::SIZE);
let offset = <B as crate::regs::macros::RegisterBase<$base>>::BASE +
Self::OFFSET + (idx * Self::STRIDE);
let value = io.read32(offset);
Self(value)
}
/// Write the value contained in `self` to `io`, using the base address provided by
/// `base` and adding the offset of array register `idx` to it.
#[inline(always)]
pub(crate) fn write<const SIZE: usize, T, B>(
self,
io: &T,
#[allow(unused_variables)]
base: &B,
idx: usize
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
{
build_assert!(idx < Self::SIZE);
let offset = <B as crate::regs::macros::RegisterBase<$base>>::BASE +
Self::OFFSET + (idx * Self::STRIDE);
io.write32(self.0, offset);
}
/// Read the array register at index `idx` from `io`, using the base address provided
/// by `base` and adding the register's offset to it, then run `f` on its value to
/// obtain a new value to write back.
#[inline(always)]
pub(crate) fn update<const SIZE: usize, T, B, F>(
io: &T,
base: &B,
idx: usize,
f: F,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::read(io, base, idx));
reg.write(io, base, idx);
}
/// Read the array register at index `idx` from `io`, using the base address provided
/// by `base` and adding the register's offset to it.
///
/// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
/// access was out-of-bounds.
#[inline(always)]
pub(crate) fn try_read<const SIZE: usize, T, B>(
io: &T,
base: &B,
idx: usize,
) -> ::kernel::error::Result<Self> where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
{
if idx < Self::SIZE {
Ok(Self::read(io, base, idx))
} else {
Err(EINVAL)
}
}
/// Write the value contained in `self` to `io`, using the base address provided by
/// `base` and adding the offset of array register `idx` to it.
///
/// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
/// access was out-of-bounds.
#[inline(always)]
pub(crate) fn try_write<const SIZE: usize, T, B>(
self,
io: &T,
base: &B,
idx: usize,
) -> ::kernel::error::Result where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
{
if idx < Self::SIZE {
Ok(self.write(io, base, idx))
} else {
Err(EINVAL)
}
}
/// Read the array register at index `idx` from `io`, using the base address provided
/// by `base` and adding the register's offset to it, then run `f` on its value to
/// obtain a new value to write back.
///
/// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
/// access was out-of-bounds.
#[inline(always)]
pub(crate) fn try_update<const SIZE: usize, T, B, F>(
io: &T,
base: &B,
idx: usize,
f: F,
) -> ::kernel::error::Result where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
F: ::core::ops::FnOnce(Self) -> Self,
{
if idx < Self::SIZE {
Ok(Self::update(io, base, idx, f))
} else {
Err(EINVAL)
}
}
}
};
}
|