summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/i915/display/intel_lt_phy.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2025-12-04 08:53:30 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2025-12-04 08:53:30 -0800
commit6dfafbd0299a60bfb5d5e277fdf100037c7ded07 (patch)
treeaccb0e721120091f05107277744187d09e86fe5a /drivers/gpu/drm/i915/display/intel_lt_phy.c
parent94e244d9ccab578f83a218ec58376d025014fcce (diff)
parent0692602defb0c273f80dec9c564ca50726404aca (diff)
Merge tag 'drm-next-2025-12-03' of https://gitlab.freedesktop.org/drm/kernel
Pull drm updates from Dave Airlie: "There was a rather late merge of a new color pipeline feature, that some userspace projects are blocked on, and has seen a lot of work in amdgpu. This should have seen some time in -next. There is additional support for this for Intel, that if it arrives in the next day or two I'll pass it on in another pull request and you can decide if you want to take it. Highlights: - Arm Ethos NPU accelerator driver - new DRM color pipeline support - amdgpu will now run discrete SI/CIK cards instead of radeon, which enables vulkan support in userspace - msm gets gen8 gpu support - initial Xe3P support in xe Full detail summary: New driver: - Arm Ethos-U65/U85 accel driver Core: - support the drm color pipeline in vkms/amdgfx - add support for drm colorop pipeline - add COLOR PIPELINE plane property - add DRM_CLIENT_CAP_PLANE_COLOR_PIPELINE - throttle dirty worker with vblank - use drm_for_each_bridge_in_chain_scoped in drm's bridge code - Ensure drm_client_modeset tests are enabled in UML - add simulated vblank interrupt - use in drivers - dumb buffer sizing helper - move freeing of drm client memory to driver - crtc sharpness strength property - stop using system_wq in scheduler/drivers - support emergency restore in drm-client Rust: - make slice::as_flattened usable on all supported rustc - add FromBytes::from_bytes_prefix() method - remove redundant device ptr from Rust GEM object - Change how AlwaysRefCounted is implemented for GEM objects gpuvm: - Add deferred vm_bo cleanup to GPUVM (for rust) atomic: - cleanup and improve state handling interfaces buddy: - optimize block management dma-buf: - heaps: Create heap per CMA reserved location - improve userspace documentation dp: - add POST_LT_ADJ_REQ training sequence - DPCD dSC quirk for synaptics panamera devices - helpers to query branch DSC max throughput ttm: - Rename ttm_bo_put to ttm_bo_fini - allow page protection flags on risc-v - rework pipelined eviction fence handling amdgpu: - enable amdgpu by default for SI/CI dGPUs - enable DC by default on SI - refactor CIK/SI enablement - add ABM KMS property - Re-enable DM idle optimizations - DC Analog encoders support - Powerplay fixes for fiji/iceland - Enable DC on bonaire by default - HMM cleanup - Add new RAS framework - DML2.1 updates - YCbCr420 fixes - DC FP fixes - DMUB fixes - LTTPR fixes - DTBCLK fixes - DMU cursor offload handling - Userq validation improvements - Unify shutdown callback handling - Suspend improvements - Power limit code cleanup - SR-IOV fixes - AUX backlight fixes - DCN 3.5 fixes - HDMI compliance fixes - DCN 4.0.1 cursor updates - DCN interrupt fix - DC KMS full update improvements - Add additional HDCP traces - DCN 3.2 fixes - DP MST fixes - Add support for new SR-IOV mailbox interface - UQ reset support - HDP flush rework - VCE1 support amdkfd: - HMM cleanups - Relax checks on save area overallocations - Fix GPU mappings after prefetch radeon: - refactor CIK/SI enablement xe: - Initial Xe3P support - panic support on VRAM for display - fix stolen size check - Loosen used tracking restriction - New SR-IOV debugfs structure and debugfs updates - Hide the GPU madvise flag behind a VM_BIND flag - Always expose VRAM provisioning data on discrete GPUs - Allow VRAM mappings for userptr when used with SVM - Allow pinning of p2p dma-buf - Use per-tile debugfs where appropriate - Add documentation for Execution Queues - PF improvements - VF migration recovery redesign work - User / Kernel VRAM partitioning - Update Tile-based messages - Allow configfs to disable specific GT types - VF provisioning and migration improvements - use SVM range helpers in PT layer - Initial CRI support - access VF registers using dedicated MMIO view - limit number of jobs per exec queue - add sriov_admin sysfs tree - more crescent island specific support - debugfs residency counter - SRIOV migration work - runtime registers for GFX 35 i915: - add initial Xe3p_LPD display version 35 support - Enable LNL+ content adaptive sharpness filter - Use optimized VRR guardband - Enable Xe3p LT PHY - enable FBC support for Xe3p_LPD display - add display 30.02 firmware support - refactor SKL+ watermark latency setup - refactor fbdev handling - call i915/xe runtime PM via function pointers - refactor i915/xe stolen memory/display interfaces - use display version instead of gfx version in display code - extend i915_display_info with Type-C port details - lots of display cleanups/refactorings - set O_LARGEFILE in __create_shmem - skuip guc communication warning on reset - fix time conversions - defeature DRRS on LNL+ - refactor intel_frontbuffer split between i915/xe/display - convert inteL_rom interfaces to struct drm_device - unify display register polling interfaces - aovid lock inversion when pinning to GGTT on CHV/BXT+VTD panel: - Add KD116N3730A08/A12, chromebook mt8189 - JT101TM023, LQ079L1SX01, - GLD070WX3-SL01 MIPI DSI - Samsung LTL106AL0, Samsung LTL106AL01 - Raystar RFF500F-AWH-DNN - Winstar WF70A8SYJHLNGA - Wanchanglong w552946aaa - Samsung SOFEF00 - Lenovo X13s panel - ilitek-ili9881c - add rpi 5" support - visionx-rm69299 - add backlight support - edp - support AUI B116XAN02.0 bridge: - improve ref counting - ti-sn65dsi86 - add support for DP mode with HPD - synopsis: support CEC, init timer with correct freq - ASL CS5263 DP-to-HDMI bridge support nova-core: - introduce bitfield! macro - introduce safe integer converters - GSP inits to fully booted state on Ampere - Use more future-proof register for GPU identification nova-drm: - select NOVA_CORE - 64-bit only nouveau: - improve reclocking on tegra 186+ - add large page and compression support msm: - GPU: - Gen8 support: A840 (Kaanapali) and X2-85 (Glymur) - A612 support - MDSS: - Added support for Glymur and QCS8300 platforms - DPU: - Enabled Quad-Pipe support, unlocking higher resolutions support - Added support for Glymur platform - Documented DPU on QCS8300 platform as supported - DisplayPort: - Added support for Glymur platform - Added support lame remapping inside DP block - Documented DisplayPort controller on QCS8300 and SM6150/QCS615 as supported tegra: - NVJPG driver panfrost: - display JM contexts over debugfs - export JM contexts to userspace - improve error and job handling panthor: - support custom ASN_HASH for mt8196 - support mali-G1 GPU - flush shmem write before mapping buffers uncached - make timeout per-queue instead of per-job mediatek: - MT8195/88 HDMIv2/DDCv2 support rockchip: - dsi: add support for RK3368 amdxdna: - enhance runtime PM - last hardware error reading uapi - support firmware debug output - add resource and telemetry data uapi - preemption support imx: - add driver for HDMI TX Parallel audio interface ivpu: - add support for user-managed preemption buffer - add userptr support - update JSM firware API to 3.33.0 - add better alloc/free warnings - fix page fault in unbind all bos - rework bind/unbind of imported buffers - enable MCA ECC signalling - split fw runtime and global memory buffers - add fdinfo memory statistics tidss: - convert to drm logging - logging cleanup ast: - refactor generation init paths - add per chip generation detect_tx_chip - set quirks for each chip model atmel-hlcdc: - set LCDC_ATTRE register in plane disable - set correct values for plane scaler solomon: - use drm helper for get_modes and move_valid sitronix: - fix output position when clearing screens qaic: - support dma-buf exports - support new firmware's READ_DATA implementation - sahara AIC200 image table update - add sysfs support - add coredump support - add uevents support - PM support sun4i: - layer refactors to decouple plane from output - improve DE33 support vc4: - switch to generic CEC helpers komeda: - use drm_ logging functions vkms: - configfs support for display configuration vgem: - fix fence timer deadlock etnaviv: - add HWDB entry for GC8000 Nano Ultra VIP r6205" * tag 'drm-next-2025-12-03' of https://gitlab.freedesktop.org/drm/kernel: (1869 commits) Revert "drm/amd: Skip power ungate during suspend for VPE" drm/amdgpu: use common defines for HUB faults drm/amdgpu/gmc12: add amdgpu_vm_handle_fault() handling drm/amdgpu/gmc11: add amdgpu_vm_handle_fault() handling drm/amdgpu: use static ids for ACP platform devs drm/amdgpu/sdma6: Update SDMA 6.0.3 FW version to include UMQ protected-fence fix drm/amdgpu: Forward VMID reservation errors drm/amdgpu/gmc8: Delegate VM faults to soft IRQ handler ring drm/amdgpu/gmc7: Delegate VM faults to soft IRQ handler ring drm/amdgpu/gmc6: Delegate VM faults to soft IRQ handler ring drm/amdgpu/gmc6: Cache VM fault info drm/amdgpu/gmc6: Don't print MC client as it's unknown drm/amdgpu/cz_ih: Enable soft IRQ handler ring drm/amdgpu/tonga_ih: Enable soft IRQ handler ring drm/amdgpu/iceland_ih: Enable soft IRQ handler ring drm/amdgpu/cik_ih: Enable soft IRQ handler ring drm/amdgpu/si_ih: Enable soft IRQ handler ring drm/amd/display: fix typo in display_mode_core_structs.h drm/amd/display: fix Smart Power OLED not working after S4 drm/amd/display: Move RGB-type check for audio sync to DCE HW sequence ...
Diffstat (limited to 'drivers/gpu/drm/i915/display/intel_lt_phy.c')
-rw-r--r--drivers/gpu/drm/i915/display/intel_lt_phy.c2327
1 files changed, 2327 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/display/intel_lt_phy.c b/drivers/gpu/drm/i915/display/intel_lt_phy.c
new file mode 100644
index 000000000000..a67eb4f7f897
--- /dev/null
+++ b/drivers/gpu/drm/i915/display/intel_lt_phy.c
@@ -0,0 +1,2327 @@
+// SPDX-License-Identifier: MIT
+/*
+ * Copyright © 2025 Intel Corporation
+ */
+
+#include <drm/drm_print.h>
+
+#include "i915_reg.h"
+#include "intel_cx0_phy.h"
+#include "intel_cx0_phy_regs.h"
+#include "intel_ddi.h"
+#include "intel_ddi_buf_trans.h"
+#include "intel_de.h"
+#include "intel_display.h"
+#include "intel_display_types.h"
+#include "intel_display_utils.h"
+#include "intel_dpll_mgr.h"
+#include "intel_hdmi.h"
+#include "intel_lt_phy.h"
+#include "intel_lt_phy_regs.h"
+#include "intel_panel.h"
+#include "intel_psr.h"
+#include "intel_tc.h"
+
+#define for_each_lt_phy_lane_in_mask(__lane_mask, __lane) \
+ for ((__lane) = 0; (__lane) < 2; (__lane)++) \
+ for_each_if((__lane_mask) & BIT(__lane))
+
+#define INTEL_LT_PHY_LANE0 BIT(0)
+#define INTEL_LT_PHY_LANE1 BIT(1)
+#define INTEL_LT_PHY_BOTH_LANES (INTEL_LT_PHY_LANE1 |\
+ INTEL_LT_PHY_LANE0)
+#define MODE_DP 3
+#define Q32_TO_INT(x) ((x) >> 32)
+#define Q32_TO_FRAC(x) ((x) & 0xFFFFFFFF)
+#define DCO_MIN_FREQ_MHZ 11850
+#define REF_CLK_KHZ 38400
+#define TDC_RES_MULTIPLIER 10000000ULL
+
+struct phy_param_t {
+ u32 val;
+ u32 addr;
+};
+
+struct lt_phy_params {
+ struct phy_param_t pll_reg4;
+ struct phy_param_t pll_reg3;
+ struct phy_param_t pll_reg5;
+ struct phy_param_t pll_reg57;
+ struct phy_param_t lf;
+ struct phy_param_t tdc;
+ struct phy_param_t ssc;
+ struct phy_param_t bias2;
+ struct phy_param_t bias_trim;
+ struct phy_param_t dco_med;
+ struct phy_param_t dco_fine;
+ struct phy_param_t ssc_inj;
+ struct phy_param_t surv_bonus;
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_dp_rbr = {
+ .clock = 162000,
+ .config = {
+ 0x83,
+ 0x2d,
+ 0x0,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x5, 0xa, 0x2a, 0x20 },
+ { 0x80, 0x0, 0x0, 0x0 },
+ { 0x4, 0x4, 0x82, 0x28 },
+ { 0xfa, 0x16, 0x83, 0x11 },
+ { 0x80, 0x0f, 0xf9, 0x53 },
+ { 0x84, 0x26, 0x5, 0x4 },
+ { 0x0, 0xe0, 0x1, 0x0 },
+ { 0x4b, 0x48, 0x0, 0x0 },
+ { 0x27, 0x8, 0x0, 0x0 },
+ { 0x5a, 0x13, 0x29, 0x13 },
+ { 0x0, 0x5b, 0xe0, 0x0a },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_dp_hbr1 = {
+ .clock = 270000,
+ .config = {
+ 0x8b,
+ 0x2d,
+ 0x0,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x3, 0xca, 0x34, 0xa0 },
+ { 0xe0, 0x0, 0x0, 0x0 },
+ { 0x5, 0x4, 0x81, 0xad },
+ { 0xfa, 0x11, 0x83, 0x11 },
+ { 0x80, 0x0f, 0xf9, 0x53 },
+ { 0x84, 0x26, 0x7, 0x4 },
+ { 0x0, 0xe0, 0x1, 0x0 },
+ { 0x43, 0x48, 0x0, 0x0 },
+ { 0x27, 0x8, 0x0, 0x0 },
+ { 0x5a, 0x13, 0x29, 0x13 },
+ { 0x0, 0x5b, 0xe0, 0x0d },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_dp_hbr2 = {
+ .clock = 540000,
+ .config = {
+ 0x93,
+ 0x2d,
+ 0x0,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x1, 0x4d, 0x34, 0xa0 },
+ { 0xe0, 0x0, 0x0, 0x0 },
+ { 0xa, 0x4, 0x81, 0xda },
+ { 0xfa, 0x11, 0x83, 0x11 },
+ { 0x80, 0x0f, 0xf9, 0x53 },
+ { 0x84, 0x26, 0x7, 0x4 },
+ { 0x0, 0xe0, 0x1, 0x0 },
+ { 0x43, 0x48, 0x0, 0x0 },
+ { 0x27, 0x8, 0x0, 0x0 },
+ { 0x5a, 0x13, 0x29, 0x13 },
+ { 0x0, 0x5b, 0xe0, 0x0d },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_dp_hbr3 = {
+ .clock = 810000,
+ .config = {
+ 0x9b,
+ 0x2d,
+ 0x0,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x1, 0x4a, 0x34, 0xa0 },
+ { 0xe0, 0x0, 0x0, 0x0 },
+ { 0x5, 0x4, 0x80, 0xa8 },
+ { 0xfa, 0x11, 0x83, 0x11 },
+ { 0x80, 0x0f, 0xf9, 0x53 },
+ { 0x84, 0x26, 0x7, 0x4 },
+ { 0x0, 0xe0, 0x1, 0x0 },
+ { 0x43, 0x48, 0x0, 0x0 },
+ { 0x27, 0x8, 0x0, 0x0 },
+ { 0x5a, 0x13, 0x29, 0x13 },
+ { 0x0, 0x5b, 0xe0, 0x0d },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_dp_uhbr10 = {
+ .clock = 1000000,
+ .config = {
+ 0x43,
+ 0x2d,
+ 0x0,
+ },
+ .addr_msb = {
+ 0x85,
+ 0x85,
+ 0x85,
+ 0x85,
+ 0x86,
+ 0x86,
+ 0x86,
+ 0x86,
+ 0x86,
+ 0x86,
+ 0x86,
+ 0x86,
+ 0x86,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x1, 0xa, 0x20, 0x80 },
+ { 0x6a, 0xaa, 0xaa, 0xab },
+ { 0x0, 0x3, 0x4, 0x94 },
+ { 0xfa, 0x1c, 0x83, 0x11 },
+ { 0x80, 0x0f, 0xf9, 0x53 },
+ { 0x84, 0x26, 0x4, 0x4 },
+ { 0x0, 0xe0, 0x1, 0x0 },
+ { 0x45, 0x48, 0x0, 0x0 },
+ { 0x27, 0x8, 0x0, 0x0 },
+ { 0x5a, 0x14, 0x2a, 0x14 },
+ { 0x0, 0x5b, 0xe0, 0x8 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_dp_uhbr13_5 = {
+ .clock = 1350000,
+ .config = {
+ 0xcb,
+ 0x2d,
+ 0x0,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x2, 0x9, 0x2b, 0xe0 },
+ { 0x90, 0x0, 0x0, 0x0 },
+ { 0x8, 0x4, 0x80, 0xe0 },
+ { 0xfa, 0x15, 0x83, 0x11 },
+ { 0x80, 0x0f, 0xf9, 0x53 },
+ { 0x84, 0x26, 0x6, 0x4 },
+ { 0x0, 0xe0, 0x1, 0x0 },
+ { 0x49, 0x48, 0x0, 0x0 },
+ { 0x27, 0x8, 0x0, 0x0 },
+ { 0x5a, 0x13, 0x29, 0x13 },
+ { 0x0, 0x57, 0xe0, 0x0c },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_dp_uhbr20 = {
+ .clock = 2000000,
+ .config = {
+ 0x53,
+ 0x2d,
+ 0x0,
+ },
+ .addr_msb = {
+ 0x85,
+ 0x85,
+ 0x85,
+ 0x85,
+ 0x86,
+ 0x86,
+ 0x86,
+ 0x86,
+ 0x86,
+ 0x86,
+ 0x86,
+ 0x86,
+ 0x86,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x1, 0xa, 0x20, 0x80 },
+ { 0x6a, 0xaa, 0xaa, 0xab },
+ { 0x0, 0x3, 0x4, 0x94 },
+ { 0xfa, 0x1c, 0x83, 0x11 },
+ { 0x80, 0x0f, 0xf9, 0x53 },
+ { 0x84, 0x26, 0x4, 0x4 },
+ { 0x0, 0xe0, 0x1, 0x0 },
+ { 0x45, 0x48, 0x0, 0x0 },
+ { 0x27, 0x8, 0x0, 0x0 },
+ { 0x5a, 0x14, 0x2a, 0x14 },
+ { 0x0, 0x5b, 0xe0, 0x8 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state * const xe3plpd_lt_dp_tables[] = {
+ &xe3plpd_lt_dp_rbr,
+ &xe3plpd_lt_dp_hbr1,
+ &xe3plpd_lt_dp_hbr2,
+ &xe3plpd_lt_dp_hbr3,
+ &xe3plpd_lt_dp_uhbr10,
+ &xe3plpd_lt_dp_uhbr13_5,
+ &xe3plpd_lt_dp_uhbr20,
+ NULL,
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_edp_2_16 = {
+ .clock = 216000,
+ .config = {
+ 0xa3,
+ 0x2d,
+ 0x1,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x3, 0xca, 0x2a, 0x20 },
+ { 0x80, 0x0, 0x0, 0x0 },
+ { 0x6, 0x4, 0x81, 0xbc },
+ { 0xfa, 0x16, 0x83, 0x11 },
+ { 0x80, 0x0f, 0xf9, 0x53 },
+ { 0x84, 0x26, 0x5, 0x4 },
+ { 0x0, 0xe0, 0x1, 0x0 },
+ { 0x4b, 0x48, 0x0, 0x0 },
+ { 0x27, 0x8, 0x0, 0x0 },
+ { 0x5a, 0x13, 0x29, 0x13 },
+ { 0x0, 0x5b, 0xe0, 0x0a },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_edp_2_43 = {
+ .clock = 243000,
+ .config = {
+ 0xab,
+ 0x2d,
+ 0x1,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x3, 0xca, 0x2f, 0x60 },
+ { 0xb0, 0x0, 0x0, 0x0 },
+ { 0x6, 0x4, 0x81, 0xbc },
+ { 0xfa, 0x13, 0x83, 0x11 },
+ { 0x80, 0x0f, 0xf9, 0x53 },
+ { 0x84, 0x26, 0x6, 0x4 },
+ { 0x0, 0xe0, 0x1, 0x0 },
+ { 0x47, 0x48, 0x0, 0x0 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ { 0x5a, 0x13, 0x29, 0x13 },
+ { 0x0, 0x5b, 0xe0, 0x0c },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_edp_3_24 = {
+ .clock = 324000,
+ .config = {
+ 0xb3,
+ 0x2d,
+ 0x1,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x2, 0x8a, 0x2a, 0x20 },
+ { 0x80, 0x0, 0x0, 0x0 },
+ { 0x6, 0x4, 0x81, 0x28 },
+ { 0xfa, 0x16, 0x83, 0x11 },
+ { 0x80, 0x0f, 0xf9, 0x53 },
+ { 0x84, 0x26, 0x5, 0x4 },
+ { 0x0, 0xe0, 0x1, 0x0 },
+ { 0x4b, 0x48, 0x0, 0x0 },
+ { 0x27, 0x8, 0x0, 0x0 },
+ { 0x5a, 0x13, 0x29, 0x13 },
+ { 0x0, 0x5b, 0xe0, 0x0a },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_edp_4_32 = {
+ .clock = 432000,
+ .config = {
+ 0xbb,
+ 0x2d,
+ 0x1,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x1, 0x4d, 0x2a, 0x20 },
+ { 0x80, 0x0, 0x0, 0x0 },
+ { 0xc, 0x4, 0x81, 0xbc },
+ { 0xfa, 0x16, 0x83, 0x11 },
+ { 0x80, 0x0f, 0xf9, 0x53 },
+ { 0x84, 0x26, 0x5, 0x4 },
+ { 0x0, 0xe0, 0x1, 0x0 },
+ { 0x4b, 0x48, 0x0, 0x0 },
+ { 0x27, 0x8, 0x0, 0x0 },
+ { 0x5a, 0x13, 0x29, 0x13 },
+ { 0x0, 0x5b, 0xe0, 0x0a },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_edp_6_75 = {
+ .clock = 675000,
+ .config = {
+ 0xdb,
+ 0x2d,
+ 0x1,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x1, 0x4a, 0x2b, 0xe0 },
+ { 0x90, 0x0, 0x0, 0x0 },
+ { 0x6, 0x4, 0x80, 0xa8 },
+ { 0xfa, 0x15, 0x83, 0x11 },
+ { 0x80, 0x0f, 0xf9, 0x53 },
+ { 0x84, 0x26, 0x6, 0x4 },
+ { 0x0, 0xe0, 0x1, 0x0 },
+ { 0x49, 0x48, 0x0, 0x0 },
+ { 0x27, 0x8, 0x0, 0x0 },
+ { 0x5a, 0x13, 0x29, 0x13 },
+ { 0x0, 0x57, 0xe0, 0x0c },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state * const xe3plpd_lt_edp_tables[] = {
+ &xe3plpd_lt_dp_rbr,
+ &xe3plpd_lt_edp_2_16,
+ &xe3plpd_lt_edp_2_43,
+ &xe3plpd_lt_dp_hbr1,
+ &xe3plpd_lt_edp_3_24,
+ &xe3plpd_lt_edp_4_32,
+ &xe3plpd_lt_dp_hbr2,
+ &xe3plpd_lt_edp_6_75,
+ &xe3plpd_lt_dp_hbr3,
+ NULL,
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_hdmi_252 = {
+ .clock = 25200,
+ .config = {
+ 0x84,
+ 0x2d,
+ 0x0,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x0c, 0x15, 0x27, 0x60 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ { 0x8, 0x4, 0x98, 0x28 },
+ { 0x42, 0x0, 0x84, 0x10 },
+ { 0x80, 0x0f, 0xd9, 0xb5 },
+ { 0x86, 0x0, 0x0, 0x0 },
+ { 0x1, 0xa0, 0x1, 0x0 },
+ { 0x4b, 0x0, 0x0, 0x0 },
+ { 0x28, 0x0, 0x0, 0x0 },
+ { 0x0, 0x14, 0x2a, 0x14 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_hdmi_272 = {
+ .clock = 27200,
+ .config = {
+ 0x84,
+ 0x2d,
+ 0x0,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x0b, 0x15, 0x26, 0xa0 },
+ { 0x60, 0x0, 0x0, 0x0 },
+ { 0x8, 0x4, 0x96, 0x28 },
+ { 0xfa, 0x0c, 0x84, 0x11 },
+ { 0x80, 0x0f, 0xd9, 0x53 },
+ { 0x86, 0x0, 0x0, 0x0 },
+ { 0x1, 0xa0, 0x1, 0x0 },
+ { 0x4b, 0x0, 0x0, 0x0 },
+ { 0x28, 0x0, 0x0, 0x0 },
+ { 0x0, 0x14, 0x2a, 0x14 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_hdmi_742p5 = {
+ .clock = 74250,
+ .config = {
+ 0x84,
+ 0x2d,
+ 0x0,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x4, 0x15, 0x26, 0xa0 },
+ { 0x60, 0x0, 0x0, 0x0 },
+ { 0x8, 0x4, 0x88, 0x28 },
+ { 0xfa, 0x0c, 0x84, 0x11 },
+ { 0x80, 0x0f, 0xd9, 0x53 },
+ { 0x86, 0x0, 0x0, 0x0 },
+ { 0x1, 0xa0, 0x1, 0x0 },
+ { 0x4b, 0x0, 0x0, 0x0 },
+ { 0x28, 0x0, 0x0, 0x0 },
+ { 0x0, 0x14, 0x2a, 0x14 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_hdmi_1p485 = {
+ .clock = 148500,
+ .config = {
+ 0x84,
+ 0x2d,
+ 0x0,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x2, 0x15, 0x26, 0xa0 },
+ { 0x60, 0x0, 0x0, 0x0 },
+ { 0x8, 0x4, 0x84, 0x28 },
+ { 0xfa, 0x0c, 0x84, 0x11 },
+ { 0x80, 0x0f, 0xd9, 0x53 },
+ { 0x86, 0x0, 0x0, 0x0 },
+ { 0x1, 0xa0, 0x1, 0x0 },
+ { 0x4b, 0x0, 0x0, 0x0 },
+ { 0x28, 0x0, 0x0, 0x0 },
+ { 0x0, 0x14, 0x2a, 0x14 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state xe3plpd_lt_hdmi_5p94 = {
+ .clock = 594000,
+ .config = {
+ 0x84,
+ 0x2d,
+ 0x0,
+ },
+ .addr_msb = {
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x87,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ 0x88,
+ },
+ .addr_lsb = {
+ 0x10,
+ 0x0c,
+ 0x14,
+ 0xe4,
+ 0x0c,
+ 0x10,
+ 0x14,
+ 0x18,
+ 0x48,
+ 0x40,
+ 0x4c,
+ 0x24,
+ 0x44,
+ },
+ .data = {
+ { 0x0, 0x4c, 0x2, 0x0 },
+ { 0x0, 0x95, 0x26, 0xa0 },
+ { 0x60, 0x0, 0x0, 0x0 },
+ { 0x8, 0x4, 0x81, 0x28 },
+ { 0xfa, 0x0c, 0x84, 0x11 },
+ { 0x80, 0x0f, 0xd9, 0x53 },
+ { 0x86, 0x0, 0x0, 0x0 },
+ { 0x1, 0xa0, 0x1, 0x0 },
+ { 0x4b, 0x0, 0x0, 0x0 },
+ { 0x28, 0x0, 0x0, 0x0 },
+ { 0x0, 0x14, 0x2a, 0x14 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ { 0x0, 0x0, 0x0, 0x0 },
+ },
+};
+
+static const struct intel_lt_phy_pll_state * const xe3plpd_lt_hdmi_tables[] = {
+ &xe3plpd_lt_hdmi_252,
+ &xe3plpd_lt_hdmi_272,
+ &xe3plpd_lt_hdmi_742p5,
+ &xe3plpd_lt_hdmi_1p485,
+ &xe3plpd_lt_hdmi_5p94,
+ NULL,
+};
+
+static u8 intel_lt_phy_get_owned_lane_mask(struct intel_encoder *encoder)
+{
+ struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
+
+ if (!intel_tc_port_in_dp_alt_mode(dig_port))
+ return INTEL_LT_PHY_BOTH_LANES;
+
+ return intel_tc_port_max_lane_count(dig_port) > 2
+ ? INTEL_LT_PHY_BOTH_LANES : INTEL_LT_PHY_LANE0;
+}
+
+static u8 intel_lt_phy_read(struct intel_encoder *encoder, u8 lane_mask, u16 addr)
+{
+ return intel_cx0_read(encoder, lane_mask, addr);
+}
+
+static void intel_lt_phy_write(struct intel_encoder *encoder,
+ u8 lane_mask, u16 addr, u8 data, bool committed)
+{
+ intel_cx0_write(encoder, lane_mask, addr, data, committed);
+}
+
+static void intel_lt_phy_rmw(struct intel_encoder *encoder,
+ u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
+{
+ intel_cx0_rmw(encoder, lane_mask, addr, clear, set, committed);
+}
+
+static void intel_lt_phy_clear_status_p2p(struct intel_encoder *encoder,
+ int lane)
+{
+ struct intel_display *display = to_intel_display(encoder);
+
+ intel_de_rmw(display,
+ XE3PLPD_PORT_P2M_MSGBUS_STATUS_P2P(encoder->port, lane),
+ XELPDP_PORT_P2M_RESPONSE_READY, 0);
+}
+
+static void
+assert_dc_off(struct intel_display *display)
+{
+ bool enabled;
+
+ enabled = intel_display_power_is_enabled(display, POWER_DOMAIN_DC_OFF);
+ drm_WARN_ON(display->drm, !enabled);
+}
+
+static int __intel_lt_phy_p2p_write_once(struct intel_encoder *encoder,
+ int lane, u16 addr, u8 data,
+ i915_reg_t mac_reg_addr,
+ u8 expected_mac_val)
+{
+ struct intel_display *display = to_intel_display(encoder);
+ enum port port = encoder->port;
+ enum phy phy = intel_encoder_to_phy(encoder);
+ int ack;
+ u32 val;
+
+ if (intel_de_wait_for_clear_ms(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
+ XELPDP_PORT_P2P_TRANSACTION_PENDING,
+ XELPDP_MSGBUS_TIMEOUT_MS)) {
+ drm_dbg_kms(display->drm,
+ "PHY %c Timeout waiting for previous transaction to complete. Resetting bus.\n",
+ phy_name(phy));
+ intel_cx0_bus_reset(encoder, lane);
+ return -ETIMEDOUT;
+ }
+
+ intel_de_rmw(display, XELPDP_PORT_P2M_MSGBUS_STATUS(display, port, lane), 0, 0);
+
+ intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
+ XELPDP_PORT_P2P_TRANSACTION_PENDING |
+ XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED |
+ XELPDP_PORT_M2P_DATA(data) |
+ XELPDP_PORT_M2P_ADDRESS(addr));
+
+ ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val);
+ if (ack < 0)
+ return ack;
+
+ if (val & XELPDP_PORT_P2M_ERROR_SET) {
+ drm_dbg_kms(display->drm,
+ "PHY %c Error occurred during P2P write command. Status: 0x%x\n",
+ phy_name(phy), val);
+ intel_lt_phy_clear_status_p2p(encoder, lane);
+ intel_cx0_bus_reset(encoder, lane);
+ return -EINVAL;
+ }
+
+ /*
+ * RE-VISIT:
+ * This needs to be added to give PHY time to set everything up this was a requirement
+ * to get the display up and running
+ * This is the time PHY takes to settle down after programming the PHY.
+ */
+ udelay(150);
+ intel_clear_response_ready_flag(encoder, lane);
+ intel_lt_phy_clear_status_p2p(encoder, lane);
+
+ return 0;
+}
+
+static void __intel_lt_phy_p2p_write(struct intel_encoder *encoder,
+ int lane, u16 addr, u8 data,
+ i915_reg_t mac_reg_addr,
+ u8 expected_mac_val)
+{
+ struct intel_display *display = to_intel_display(encoder);
+ enum phy phy = intel_encoder_to_phy(encoder);
+ int i, status;
+
+ assert_dc_off(display);
+
+ /* 3 tries is assumed to be enough to write successfully */
+ for (i = 0; i < 3; i++) {
+ status = __intel_lt_phy_p2p_write_once(encoder, lane, addr, data, mac_reg_addr,
+ expected_mac_val);
+
+ if (status == 0)
+ return;
+ }
+
+ drm_err_once(display->drm,
+ "PHY %c P2P Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
+}
+
+static void intel_lt_phy_p2p_write(struct intel_encoder *encoder,
+ u8 lane_mask, u16 addr, u8 data,
+ i915_reg_t mac_reg_addr,
+ u8 expected_mac_val)
+{
+ int lane;
+
+ for_each_lt_phy_lane_in_mask(lane_mask, lane)
+ __intel_lt_phy_p2p_write(encoder, lane, addr, data, mac_reg_addr, expected_mac_val);
+}
+
+static void
+intel_lt_phy_setup_powerdown(struct intel_encoder *encoder, u8 lane_count)
+{
+ /*
+ * The new PORT_BUF_CTL6 stuff for dc5 entry and exit needs to be handled
+ * by dmc firmware not explicitly mentioned in Bspec. This leaves this
+ * function as a wrapper only but keeping it expecting future changes.
+ */
+ intel_cx0_setup_powerdown(encoder);
+}
+
+static void
+intel_lt_phy_powerdown_change_sequence(struct intel_encoder *encoder,
+ u8 lane_mask, u8 state)
+{
+ intel_cx0_powerdown_change_sequence(encoder, lane_mask, state);
+}
+
+static void
+intel_lt_phy_lane_reset(struct intel_encoder *encoder,
+ u8 lane_count)
+{
+ struct intel_display *display = to_intel_display(encoder);
+ enum port port = encoder->port;
+ enum phy phy = intel_encoder_to_phy(encoder);
+ u8 owned_lane_mask = intel_lt_phy_get_owned_lane_mask(encoder);
+ u32 lane_pipe_reset = owned_lane_mask == INTEL_LT_PHY_BOTH_LANES
+ ? XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1)
+ : XELPDP_LANE_PIPE_RESET(0);
+ u32 lane_phy_current_status = owned_lane_mask == INTEL_LT_PHY_BOTH_LANES
+ ? (XELPDP_LANE_PHY_CURRENT_STATUS(0) |
+ XELPDP_LANE_PHY_CURRENT_STATUS(1))
+ : XELPDP_LANE_PHY_CURRENT_STATUS(0);
+ u32 lane_phy_pulse_status = owned_lane_mask == INTEL_LT_PHY_BOTH_LANES
+ ? (XE3PLPDP_LANE_PHY_PULSE_STATUS(0) |
+ XE3PLPDP_LANE_PHY_PULSE_STATUS(1))
+ : XE3PLPDP_LANE_PHY_PULSE_STATUS(0);
+
+ intel_de_rmw(display, XE3PLPD_PORT_BUF_CTL5(port),
+ XE3PLPD_MACCLK_RATE_MASK, XE3PLPD_MACCLK_RATE_DEF);
+
+ intel_de_rmw(display, XELPDP_PORT_BUF_CTL1(display, port),
+ XE3PLPDP_PHY_MODE_MASK, XE3PLPDP_PHY_MODE_DP);
+
+ intel_lt_phy_setup_powerdown(encoder, lane_count);
+ intel_lt_phy_powerdown_change_sequence(encoder, owned_lane_mask,
+ XELPDP_P2_STATE_RESET);
+
+ intel_de_rmw(display, XE3PLPD_PORT_BUF_CTL5(port),
+ XE3PLPD_MACCLK_RESET_0, 0);
+
+ intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, port),
+ XELPDP_LANE_PCLK_PLL_REQUEST(0),
+ XELPDP_LANE_PCLK_PLL_REQUEST(0));
+
+ if (intel_de_wait_for_set_ms(display, XELPDP_PORT_CLOCK_CTL(display, port),
+ XELPDP_LANE_PCLK_PLL_ACK(0),
+ XE3PLPD_MACCLK_TURNON_LATENCY_MS))
+ drm_warn(display->drm, "PHY %c PLL MacCLK assertion ack not done\n",
+ phy_name(phy));
+
+ intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, port),
+ XELPDP_FORWARD_CLOCK_UNGATE,
+ XELPDP_FORWARD_CLOCK_UNGATE);
+
+ intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port),
+ lane_pipe_reset | lane_phy_pulse_status, 0);
+
+ if (intel_de_wait_for_clear_ms(display, XELPDP_PORT_BUF_CTL2(display, port),
+ lane_phy_current_status,
+ XE3PLPD_RESET_END_LATENCY_MS))
+ drm_warn(display->drm, "PHY %c failed to bring out of lane reset\n",
+ phy_name(phy));
+
+ if (intel_de_wait_for_set_ms(display, XELPDP_PORT_BUF_CTL2(display, port),
+ lane_phy_pulse_status,
+ XE3PLPD_RATE_CALIB_DONE_LATENCY_MS))
+ drm_warn(display->drm, "PHY %c PLL rate not changed\n",
+ phy_name(phy));
+
+ intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_phy_pulse_status, 0);
+}
+
+static void
+intel_lt_phy_program_port_clock_ctl(struct intel_encoder *encoder,
+ const struct intel_crtc_state *crtc_state,
+ bool lane_reversal)
+{
+ struct intel_display *display = to_intel_display(encoder);
+ u32 val = 0;
+
+ intel_de_rmw(display, XELPDP_PORT_BUF_CTL1(display, encoder->port),
+ XELPDP_PORT_REVERSAL,
+ lane_reversal ? XELPDP_PORT_REVERSAL : 0);
+
+ val |= XELPDP_FORWARD_CLOCK_UNGATE;
+
+ /*
+ * We actually mean MACCLK here and not MAXPCLK when using LT Phy
+ * but since the register bits still remain the same we use
+ * the same definition
+ */
+ if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
+ intel_hdmi_is_frl(crtc_state->port_clock))
+ val |= XELPDP_DDI_CLOCK_SELECT_PREP(display, XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
+ else
+ val |= XELPDP_DDI_CLOCK_SELECT_PREP(display, XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
+
+ /* DP2.0 10G and 20G rates enable MPLLA*/
+ if (crtc_state->port_clock == 1000000 || crtc_state->port_clock == 2000000)
+ val |= XELPDP_SSC_ENABLE_PLLA;
+ else
+ val |= crtc_state->dpll_hw_state.ltpll.ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
+
+ intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
+ XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
+ XELPDP_DDI_CLOCK_SELECT_MASK(display) | XELPDP_SSC_ENABLE_PLLA |
+ XELPDP_SSC_ENABLE_PLLB, val);
+}
+
+static u32 intel_lt_phy_get_dp_clock(u8 rate)
+{
+ switch (rate) {
+ case 0:
+ return 162000;
+ case 1:
+ return 270000;
+ case 2:
+ return 540000;
+ case 3:
+ return 810000;
+ case 4:
+ return 216000;
+ case 5:
+ return 243000;
+ case 6:
+ return 324000;
+ case 7:
+ return 432000;
+ case 8:
+ return 1000000;
+ case 9:
+ return 1350000;
+ case 10:
+ return 2000000;
+ case 11:
+ return 675000;
+ default:
+ MISSING_CASE(rate);
+ return 0;
+ }
+}
+
+static bool
+intel_lt_phy_config_changed(struct intel_encoder *encoder,
+ const struct intel_crtc_state *crtc_state)
+{
+ u8 val, rate;
+ u32 clock;
+
+ val = intel_lt_phy_read(encoder, INTEL_LT_PHY_LANE0,
+ LT_PHY_VDR_0_CONFIG);
+ rate = REG_FIELD_GET8(LT_PHY_VDR_RATE_ENCODING_MASK, val);
+
+ /*
+ * The only time we do not reconfigure the PLL is when we are
+ * using 1.62 Gbps clock since PHY PLL defaults to that
+ * otherwise we always need to reconfigure it.
+ */
+ if (intel_crtc_has_dp_encoder(crtc_state)) {
+ clock = intel_lt_phy_get_dp_clock(rate);
+ if (crtc_state->port_clock == 1620000 && crtc_state->port_clock == clock)
+ return false;
+ }
+
+ return true;
+}
+
+static intel_wakeref_t intel_lt_phy_transaction_begin(struct intel_encoder *encoder)
+{
+ struct intel_display *display = to_intel_display(encoder);
+ struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
+ intel_wakeref_t wakeref;
+
+ intel_psr_pause(intel_dp);
+ wakeref = intel_display_power_get(display, POWER_DOMAIN_DC_OFF);
+
+ return wakeref;
+}
+
+static void intel_lt_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
+{
+ struct intel_display *display = to_intel_display(encoder);
+ struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
+
+ intel_psr_resume(intel_dp);
+ intel_display_power_put(display, POWER_DOMAIN_DC_OFF, wakeref);
+}
+
+static const struct intel_lt_phy_pll_state * const *
+intel_lt_phy_pll_tables_get(struct intel_crtc_state *crtc_state,
+ struct intel_encoder *encoder)
+{
+ if (intel_crtc_has_dp_encoder(crtc_state)) {
+ if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
+ return xe3plpd_lt_edp_tables;
+
+ return xe3plpd_lt_dp_tables;
+ } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
+ return xe3plpd_lt_hdmi_tables;
+ }
+
+ MISSING_CASE(encoder->type);
+ return NULL;
+}
+
+static bool
+intel_lt_phy_pll_is_ssc_enabled(struct intel_crtc_state *crtc_state,
+ struct intel_encoder *encoder)
+{
+ struct intel_display *display = to_intel_display(encoder);
+
+ if (intel_crtc_has_dp_encoder(crtc_state)) {
+ if (intel_panel_use_ssc(display)) {
+ struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
+
+ return (intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
+ }
+ }
+
+ return false;
+}
+
+static u64 mul_q32_u32(u64 a_q32, u32 b)
+{
+ u64 p0, p1, carry, result;
+ u64 x_hi = a_q32 >> 32;
+ u64 x_lo = a_q32 & 0xFFFFFFFFULL;
+
+ p0 = x_lo * (u64)b;
+ p1 = x_hi * (u64)b;
+ carry = p0 >> 32;
+ result = (p1 << 32) + (carry << 32) + (p0 & 0xFFFFFFFFULL);
+
+ return result;
+}
+
+static bool
+calculate_target_dco_and_loop_cnt(u32 frequency_khz, u64 *target_dco_mhz, u32 *loop_cnt)
+{
+ u32 ppm_value = 1;
+ u32 dco_min_freq = DCO_MIN_FREQ_MHZ;
+ u32 dco_max_freq = 16200;
+ u32 dco_min_freq_low = 10000;
+ u32 dco_max_freq_low = 12000;
+ u64 val = 0;
+ u64 refclk_khz = REF_CLK_KHZ;
+ u64 m2div = 0;
+ u64 val_with_frac = 0;
+ u64 ppm = 0;
+ u64 temp0 = 0, temp1, scale;
+ int ppm_cnt, dco_count, y;
+
+ for (ppm_cnt = 0; ppm_cnt < 5; ppm_cnt++) {
+ ppm_value = ppm_cnt == 2 ? 2 : 1;
+ for (dco_count = 0; dco_count < 2; dco_count++) {
+ if (dco_count == 1) {
+ dco_min_freq = dco_min_freq_low;
+ dco_max_freq = dco_max_freq_low;
+ }
+ for (y = 2; y <= 255; y += 2) {
+ val = div64_u64((u64)y * frequency_khz, 200);
+ m2div = div64_u64(((u64)(val) << 32), refclk_khz);
+ m2div = mul_q32_u32(m2div, 500);
+ val_with_frac = mul_q32_u32(m2div, refclk_khz);
+ val_with_frac = div64_u64(val_with_frac, 500);
+ temp1 = Q32_TO_INT(val_with_frac);
+ temp0 = (temp1 > val) ? (temp1 - val) :
+ (val - temp1);
+ ppm = div64_u64(temp0, val);
+ if (temp1 >= dco_min_freq &&
+ temp1 <= dco_max_freq &&
+ ppm < ppm_value) {
+ /* Round to two places */
+ scale = (1ULL << 32) / 100;
+ temp0 = DIV_ROUND_UP_ULL(val_with_frac,
+ scale);
+ *target_dco_mhz = temp0 * scale;
+ *loop_cnt = y;
+ return true;
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+static void set_phy_vdr_addresses(struct lt_phy_params *p, int pll_type)
+{
+ p->pll_reg4.addr = PLL_REG_ADDR(PLL_REG4_ADDR, pll_type);
+ p->pll_reg3.addr = PLL_REG_ADDR(PLL_REG3_ADDR, pll_type);
+ p->pll_reg5.addr = PLL_REG_ADDR(PLL_REG5_ADDR, pll_type);
+ p->pll_reg57.addr = PLL_REG_ADDR(PLL_REG57_ADDR, pll_type);
+ p->lf.addr = PLL_REG_ADDR(PLL_LF_ADDR, pll_type);
+ p->tdc.addr = PLL_REG_ADDR(PLL_TDC_ADDR, pll_type);
+ p->ssc.addr = PLL_REG_ADDR(PLL_SSC_ADDR, pll_type);
+ p->bias2.addr = PLL_REG_ADDR(PLL_BIAS2_ADDR, pll_type);
+ p->bias_trim.addr = PLL_REG_ADDR(PLL_BIAS_TRIM_ADDR, pll_type);
+ p->dco_med.addr = PLL_REG_ADDR(PLL_DCO_MED_ADDR, pll_type);
+ p->dco_fine.addr = PLL_REG_ADDR(PLL_DCO_FINE_ADDR, pll_type);
+ p->ssc_inj.addr = PLL_REG_ADDR(PLL_SSC_INJ_ADDR, pll_type);
+ p->surv_bonus.addr = PLL_REG_ADDR(PLL_SURV_BONUS_ADDR, pll_type);
+}
+
+static void compute_ssc(struct lt_phy_params *p, u32 ana_cfg)
+{
+ int ssc_stepsize = 0;
+ int ssc_steplen = 0;
+ int ssc_steplog = 0;
+
+ p->ssc.val = (1 << 31) | (ana_cfg << 24) | (ssc_steplog << 16) |
+ (ssc_stepsize << 8) | ssc_steplen;
+}
+
+static void compute_bias2(struct lt_phy_params *p)
+{
+ u32 ssc_en_local = 0;
+ u64 dynctrl_ovrd_en = 0;
+
+ p->bias2.val = (dynctrl_ovrd_en << 31) | (ssc_en_local << 30) |
+ (1 << 23) | (1 << 24) | (32 << 16) | (1 << 8);
+}
+
+static void compute_tdc(struct lt_phy_params *p, u64 tdc_fine)
+{
+ u32 settling_time = 15;
+ u32 bias_ovr_en = 1;
+ u32 coldstart = 1;
+ u32 true_lock = 2;
+ u32 early_lock = 1;
+ u32 lock_ovr_en = 1;
+ u32 lock_thr = tdc_fine ? 3 : 5;
+ u32 unlock_thr = tdc_fine ? 5 : 11;
+
+ p->tdc.val = (u32)((2 << 30) + (settling_time << 16) + (bias_ovr_en << 15) +
+ (lock_ovr_en << 14) + (coldstart << 12) + (true_lock << 10) +
+ (early_lock << 8) + (unlock_thr << 4) + lock_thr);
+}
+
+static void compute_dco_med(struct lt_phy_params *p)
+{
+ u32 cselmed_en = 0;
+ u32 cselmed_dyn_adj = 0;
+ u32 cselmed_ratio = 39;
+ u32 cselmed_thr = 8;
+
+ p->dco_med.val = (cselmed_en << 31) + (cselmed_dyn_adj << 30) +
+ (cselmed_ratio << 24) + (cselmed_thr << 21);
+}
+
+static void compute_dco_fine(struct lt_phy_params *p, u32 dco_12g)
+{
+ u32 dco_fine0_tune_2_0 = 0;
+ u32 dco_fine1_tune_2_0 = 0;
+ u32 dco_fine2_tune_2_0 = 0;
+ u32 dco_fine3_tune_2_0 = 0;
+ u32 dco_dith0_tune_2_0 = 0;
+ u32 dco_dith1_tune_2_0 = 0;
+
+ dco_fine0_tune_2_0 = dco_12g ? 4 : 3;
+ dco_fine1_tune_2_0 = 2;
+ dco_fine2_tune_2_0 = dco_12g ? 2 : 1;
+ dco_fine3_tune_2_0 = 5;
+ dco_dith0_tune_2_0 = dco_12g ? 4 : 3;
+ dco_dith1_tune_2_0 = 2;
+
+ p->dco_fine.val = (dco_dith1_tune_2_0 << 19) +
+ (dco_dith0_tune_2_0 << 16) +
+ (dco_fine3_tune_2_0 << 11) +
+ (dco_fine2_tune_2_0 << 8) +
+ (dco_fine1_tune_2_0 << 3) +
+ dco_fine0_tune_2_0;
+}
+
+int
+intel_lt_phy_calculate_hdmi_state(struct intel_lt_phy_pll_state *lt_state,
+ u32 frequency_khz)
+{
+#define DATA_ASSIGN(i, pll_reg) \
+ do { \
+ lt_state->data[i][0] = (u8)((((pll_reg).val) & 0xFF000000) >> 24); \
+ lt_state->data[i][1] = (u8)((((pll_reg).val) & 0x00FF0000) >> 16); \
+ lt_state->data[i][2] = (u8)((((pll_reg).val) & 0x0000FF00) >> 8); \
+ lt_state->data[i][3] = (u8)((((pll_reg).val) & 0x000000FF)); \
+ } while (0)
+#define ADDR_ASSIGN(i, pll_reg) \
+ do { \
+ lt_state->addr_msb[i] = ((pll_reg).addr >> 8) & 0xFF; \
+ lt_state->addr_lsb[i] = (pll_reg).addr & 0xFF; \
+ } while (0)
+
+ bool found = false;
+ struct lt_phy_params p;
+ u32 dco_fmin = DCO_MIN_FREQ_MHZ;
+ u64 refclk_khz = REF_CLK_KHZ;
+ u32 refclk_mhz_int = REF_CLK_KHZ / 1000;
+ u64 m2div = 0;
+ u64 target_dco_mhz = 0;
+ u64 tdc_fine, tdc_targetcnt;
+ u64 feedfwd_gain ,feedfwd_cal_en;
+ u64 tdc_res = 30;
+ u32 prop_coeff;
+ u32 int_coeff;
+ u32 ndiv = 1;
+ u32 m1div = 1, m2div_int, m2div_frac;
+ u32 frac_en;
+ u32 ana_cfg;
+ u32 loop_cnt = 0;
+ u32 gain_ctrl = 2;
+ u32 postdiv = 0;
+ u32 dco_12g = 0;
+ u32 pll_type = 0;
+ u32 d1 = 2, d3 = 5, d4 = 0, d5 = 0;
+ u32 d6 = 0, d6_new = 0;
+ u32 d7, d8 = 0;
+ u32 bonus_7_0 = 0;
+ u32 csel2fo = 11;
+ u32 csel2fo_ovrd_en = 1;
+ u64 temp0, temp1, temp2, temp3;
+
+ p.surv_bonus.val = (bonus_7_0 << 16);
+ p.pll_reg4.val = (refclk_mhz_int << 17) +
+ (ndiv << 9) + (1 << 4);
+ p.bias_trim.val = (csel2fo_ovrd_en << 30) + (csel2fo << 24);
+ p.ssc_inj.val = 0;
+ found = calculate_target_dco_and_loop_cnt(frequency_khz, &target_dco_mhz, &loop_cnt);
+ if (!found)
+ return -EINVAL;
+
+ m2div = div64_u64(target_dco_mhz, (refclk_khz * ndiv * m1div));
+ m2div = mul_q32_u32(m2div, 1000);
+ if (Q32_TO_INT(m2div) > 511)
+ return -EINVAL;
+
+ m2div_int = (u32)Q32_TO_INT(m2div);
+ m2div_frac = (u32)(Q32_TO_FRAC(m2div));
+ frac_en = (m2div_frac > 0) ? 1 : 0;
+
+ if (frac_en > 0)
+ tdc_res = 70;
+ else
+ tdc_res = 36;
+ tdc_fine = tdc_res > 50 ? 1 : 0;
+ temp0 = tdc_res * 40 * 11;
+ temp1 = div64_u64(((4 * TDC_RES_MULTIPLIER) + temp0) * 500, temp0 * refclk_khz);
+ temp2 = div64_u64(temp0 * refclk_khz, 1000);
+ temp3 = div64_u64(((8 * TDC_RES_MULTIPLIER) + temp2), temp2);
+ tdc_targetcnt = tdc_res < 50 ? (int)(temp1) : (int)(temp3);
+ tdc_targetcnt = (int)(tdc_targetcnt / 2);
+ temp0 = mul_q32_u32(target_dco_mhz, tdc_res);
+ temp0 >>= 32;
+ feedfwd_gain = (m2div_frac > 0) ? div64_u64(m1div * TDC_RES_MULTIPLIER, temp0) : 0;
+ feedfwd_cal_en = frac_en;
+
+ temp0 = (u32)Q32_TO_INT(target_dco_mhz);
+ prop_coeff = (temp0 >= dco_fmin) ? 3 : 4;
+ int_coeff = (temp0 >= dco_fmin) ? 7 : 8;
+ ana_cfg = (temp0 >= dco_fmin) ? 8 : 6;
+ dco_12g = (temp0 >= dco_fmin) ? 0 : 1;
+
+ if (temp0 > 12960)
+ d7 = 10;
+ else
+ d7 = 8;
+
+ d8 = loop_cnt / 2;
+ d4 = d8 * 2;
+
+ /* Compute pll_reg3,5,57 & lf */
+ p.pll_reg3.val = (u32)((d4 << 21) + (d3 << 18) + (d1 << 15) + (m2div_int << 5));
+ p.pll_reg5.val = m2div_frac;
+ postdiv = (d5 == 0) ? 9 : d5;
+ d6_new = (d6 == 0) ? 40 : d6;
+ p.pll_reg57.val = (d7 << 24) + (postdiv << 15) + (d8 << 7) + d6_new;
+ p.lf.val = (u32)((frac_en << 31) + (1 << 30) + (frac_en << 29) +
+ (feedfwd_cal_en << 28) + (tdc_fine << 27) +
+ (gain_ctrl << 24) + (feedfwd_gain << 16) +
+ (int_coeff << 12) + (prop_coeff << 8) + tdc_targetcnt);
+
+ compute_ssc(&p, ana_cfg);
+ compute_bias2(&p);
+ compute_tdc(&p, tdc_fine);
+ compute_dco_med(&p);
+ compute_dco_fine(&p, dco_12g);
+
+ pll_type = ((frequency_khz == 10000) || (frequency_khz == 20000) ||
+ (frequency_khz == 2500) || (dco_12g == 1)) ? 0 : 1;
+ set_phy_vdr_addresses(&p, pll_type);
+
+ lt_state->config[0] = 0x84;
+ lt_state->config[1] = 0x2d;
+ ADDR_ASSIGN(0, p.pll_reg4);
+ ADDR_ASSIGN(1, p.pll_reg3);
+ ADDR_ASSIGN(2, p.pll_reg5);
+ ADDR_ASSIGN(3, p.pll_reg57);
+ ADDR_ASSIGN(4, p.lf);
+ ADDR_ASSIGN(5, p.tdc);
+ ADDR_ASSIGN(6, p.ssc);
+ ADDR_ASSIGN(7, p.bias2);
+ ADDR_ASSIGN(8, p.bias_trim);
+ ADDR_ASSIGN(9, p.dco_med);
+ ADDR_ASSIGN(10, p.dco_fine);
+ ADDR_ASSIGN(11, p.ssc_inj);
+ ADDR_ASSIGN(12, p.surv_bonus);
+ DATA_ASSIGN(0, p.pll_reg4);
+ DATA_ASSIGN(1, p.pll_reg3);
+ DATA_ASSIGN(2, p.pll_reg5);
+ DATA_ASSIGN(3, p.pll_reg57);
+ DATA_ASSIGN(4, p.lf);
+ DATA_ASSIGN(5, p.tdc);
+ DATA_ASSIGN(6, p.ssc);
+ DATA_ASSIGN(7, p.bias2);
+ DATA_ASSIGN(8, p.bias_trim);
+ DATA_ASSIGN(9, p.dco_med);
+ DATA_ASSIGN(10, p.dco_fine);
+ DATA_ASSIGN(11, p.ssc_inj);
+ DATA_ASSIGN(12, p.surv_bonus);
+
+ return 0;
+}
+
+static int
+intel_lt_phy_calc_hdmi_port_clock(const struct intel_crtc_state *crtc_state)
+{
+#define REGVAL(i) ( \
+ (lt_state->data[i][3]) | \
+ (lt_state->data[i][2] << 8) | \
+ (lt_state->data[i][1] << 16) | \
+ (lt_state->data[i][0] << 24) \
+)
+
+ struct intel_display *display = to_intel_display(crtc_state);
+ const struct intel_lt_phy_pll_state *lt_state =
+ &crtc_state->dpll_hw_state.ltpll;
+ int clk = 0;
+ u32 d8, pll_reg_5, pll_reg_3, pll_reg_57, m2div_frac, m2div_int;
+ u64 temp0, temp1;
+ /*
+ * The algorithm uses '+' to combine bitfields when
+ * constructing PLL_reg3 and PLL_reg57:
+ * PLL_reg57 = (D7 << 24) + (postdiv << 15) + (D8 << 7) + D6_new;
+ * PLL_reg3 = (D4 << 21) + (D3 << 18) + (D1 << 15) + (m2div_int << 5);
+ *
+ * However, this is likely intended to be a bitwise OR operation,
+ * as each field occupies distinct, non-overlapping bits in the register.
+ *
+ * PLL_reg57 is composed of following fields packed into a 32-bit value:
+ * - D7: max value 10 -> fits in 4 bits -> placed at bits 24-27
+ * - postdiv: max value 9 -> fits in 4 bits -> placed at bits 15-18
+ * - D8: derived from loop_cnt / 2, max 127 -> fits in 7 bits
+ * (though 8 bits are given to it) -> placed at bits 7-14
+ * - D6_new: fits in lower 7 bits -> placed at bits 0-6
+ * PLL_reg57 = (D7 << 24) | (postdiv << 15) | (D8 << 7) | D6_new;
+ *
+ * Similarly, PLL_reg3 is packed as:
+ * - D4: max value 256 -> fits in 9 bits -> placed at bits 21-29
+ * - D3: max value 9 -> fits in 4 bits -> placed at bits 18-21
+ * - D1: max value 2 -> fits in 2 bits -> placed at bits 15-16
+ * - m2div_int: max value 511 -> fits in 9 bits (10 bits allocated)
+ * -> placed at bits 5-14
+ * PLL_reg3 = (D4 << 21) | (D3 << 18) | (D1 << 15) | (m2div_int << 5);
+ */
+ pll_reg_5 = REGVAL(2);
+ pll_reg_3 = REGVAL(1);
+ pll_reg_57 = REGVAL(3);
+ m2div_frac = pll_reg_5;
+
+ /*
+ * From forward algorithm we know
+ * m2div = 2 * m2
+ * val = y * frequency * 5
+ * So now,
+ * frequency = (m2 * 2 * refclk_khz / (d8 * 10))
+ * frequency = (m2div * refclk_khz / (d8 * 10))
+ */
+ d8 = (pll_reg_57 & REG_GENMASK(14, 7)) >> 7;
+ if (d8 == 0) {
+ drm_WARN_ON(display->drm,
+ "Invalid port clock using lowest HDMI portclock\n");
+ return xe3plpd_lt_hdmi_252.clock;
+ }
+ m2div_int = (pll_reg_3 & REG_GENMASK(14, 5)) >> 5;
+ temp0 = ((u64)m2div_frac * REF_CLK_KHZ) >> 32;
+ temp1 = (u64)m2div_int * REF_CLK_KHZ;
+
+ clk = div_u64((temp1 + temp0), d8 * 10);
+
+ return clk;
+}
+
+int
+intel_lt_phy_calc_port_clock(struct intel_encoder *encoder,
+ const struct intel_crtc_state *crtc_state)
+{
+ int clk;
+ const struct intel_lt_phy_pll_state *lt_state =
+ &crtc_state->dpll_hw_state.ltpll;
+ u8 mode, rate;
+
+ mode = REG_FIELD_GET8(LT_PHY_VDR_MODE_ENCODING_MASK,
+ lt_state->config[0]);
+ /*
+ * For edp/dp read the clock value from the tables
+ * and return the clock as the algorithm used for
+ * calculating the port clock does not exactly matches
+ * with edp/dp clock.
+ */
+ if (mode == MODE_DP) {
+ rate = REG_FIELD_GET8(LT_PHY_VDR_RATE_ENCODING_MASK,
+ lt_state->config[0]);
+ clk = intel_lt_phy_get_dp_clock(rate);
+ } else {
+ clk = intel_lt_phy_calc_hdmi_port_clock(crtc_state);
+ }
+
+ return clk;
+}
+
+int
+intel_lt_phy_pll_calc_state(struct intel_crtc_state *crtc_state,
+ struct intel_encoder *encoder)
+{
+ const struct intel_lt_phy_pll_state * const *tables;
+ int i;
+
+ tables = intel_lt_phy_pll_tables_get(crtc_state, encoder);
+ if (!tables)
+ return -EINVAL;
+
+ for (i = 0; tables[i]; i++) {
+ if (crtc_state->port_clock == tables[i]->clock) {
+ crtc_state->dpll_hw_state.ltpll = *tables[i];
+ if (intel_crtc_has_dp_encoder(crtc_state)) {
+ if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
+ crtc_state->dpll_hw_state.ltpll.config[2] = 1;
+ }
+ crtc_state->dpll_hw_state.ltpll.ssc_enabled =
+ intel_lt_phy_pll_is_ssc_enabled(crtc_state, encoder);
+ return 0;
+ }
+ }
+
+ if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
+ return intel_lt_phy_calculate_hdmi_state(&crtc_state->dpll_hw_state.ltpll,
+ crtc_state->port_clock);
+ }
+
+ return -EINVAL;
+}
+
+static void
+intel_lt_phy_program_pll(struct intel_encoder *encoder,
+ const struct intel_crtc_state *crtc_state)
+{
+ u8 owned_lane_mask = intel_lt_phy_get_owned_lane_mask(encoder);
+ int i, j, k;
+
+ intel_lt_phy_write(encoder, owned_lane_mask, LT_PHY_VDR_0_CONFIG,
+ crtc_state->dpll_hw_state.ltpll.config[0], MB_WRITE_COMMITTED);
+ intel_lt_phy_write(encoder, INTEL_LT_PHY_LANE0, LT_PHY_VDR_1_CONFIG,
+ crtc_state->dpll_hw_state.ltpll.config[1], MB_WRITE_COMMITTED);
+ intel_lt_phy_write(encoder, owned_lane_mask, LT_PHY_VDR_2_CONFIG,
+ crtc_state->dpll_hw_state.ltpll.config[2], MB_WRITE_COMMITTED);
+
+ for (i = 0; i <= 12; i++) {
+ intel_lt_phy_write(encoder, INTEL_LT_PHY_LANE0, LT_PHY_VDR_X_ADDR_MSB(i),
+ crtc_state->dpll_hw_state.ltpll.addr_msb[i],
+ MB_WRITE_COMMITTED);
+ intel_lt_phy_write(encoder, INTEL_LT_PHY_LANE0, LT_PHY_VDR_X_ADDR_LSB(i),
+ crtc_state->dpll_hw_state.ltpll.addr_lsb[i],
+ MB_WRITE_COMMITTED);
+
+ for (j = 3, k = 0; j >= 0; j--, k++)
+ intel_lt_phy_write(encoder, INTEL_LT_PHY_LANE0,
+ LT_PHY_VDR_X_DATAY(i, j),
+ crtc_state->dpll_hw_state.ltpll.data[i][k],
+ MB_WRITE_COMMITTED);
+ }
+}
+
+static void
+intel_lt_phy_enable_disable_tx(struct intel_encoder *encoder,
+ const struct intel_crtc_state *crtc_state)
+{
+ struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
+ bool lane_reversal = dig_port->lane_reversal;
+ u8 lane_count = crtc_state->lane_count;
+ bool is_dp_alt =
+ intel_tc_port_in_dp_alt_mode(dig_port);
+ enum intel_tc_pin_assignment tc_pin =
+ intel_tc_port_get_pin_assignment(dig_port);
+ u8 transmitter_mask = 0;
+
+ /*
+ * We have a two transmitters per lane and total of 2 PHY lanes so a total
+ * of 4 transmitters. We prepare a mask of the lanes that need to be activated
+ * and the transmitter which need to be activated for each lane. TX 0,1 correspond
+ * to LANE0 and TX 2, 3 correspond to LANE1.
+ */
+
+ switch (lane_count) {
+ case 1:
+ transmitter_mask = lane_reversal ? REG_BIT8(3) : REG_BIT8(0);
+ if (is_dp_alt) {
+ if (tc_pin == INTEL_TC_PIN_ASSIGNMENT_D)
+ transmitter_mask = REG_BIT8(0);
+ else
+ transmitter_mask = REG_BIT8(1);
+ }
+ break;
+ case 2:
+ transmitter_mask = lane_reversal ? REG_GENMASK8(3, 2) : REG_GENMASK8(1, 0);
+ if (is_dp_alt)
+ transmitter_mask = REG_GENMASK8(1, 0);
+ break;
+ case 3:
+ transmitter_mask = lane_reversal ? REG_GENMASK8(3, 1) : REG_GENMASK8(2, 0);
+ if (is_dp_alt)
+ transmitter_mask = REG_GENMASK8(2, 0);
+ break;
+ case 4:
+ transmitter_mask = REG_GENMASK8(3, 0);
+ break;
+ default:
+ MISSING_CASE(lane_count);
+ transmitter_mask = REG_GENMASK8(3, 0);
+ break;
+ }
+
+ if (transmitter_mask & BIT(0)) {
+ intel_lt_phy_p2p_write(encoder, INTEL_LT_PHY_LANE0, LT_PHY_TXY_CTL10(0),
+ LT_PHY_TX_LANE_ENABLE, LT_PHY_TXY_CTL10_MAC(0),
+ LT_PHY_TX_LANE_ENABLE);
+ } else {
+ intel_lt_phy_p2p_write(encoder, INTEL_LT_PHY_LANE0, LT_PHY_TXY_CTL10(0),
+ 0, LT_PHY_TXY_CTL10_MAC(0), 0);
+ }
+
+ if (transmitter_mask & BIT(1)) {
+ intel_lt_phy_p2p_write(encoder, INTEL_LT_PHY_LANE0, LT_PHY_TXY_CTL10(1),
+ LT_PHY_TX_LANE_ENABLE, LT_PHY_TXY_CTL10_MAC(1),
+ LT_PHY_TX_LANE_ENABLE);
+ } else {
+ intel_lt_phy_p2p_write(encoder, INTEL_LT_PHY_LANE0, LT_PHY_TXY_CTL10(1),
+ 0, LT_PHY_TXY_CTL10_MAC(1), 0);
+ }
+
+ if (transmitter_mask & BIT(2)) {
+ intel_lt_phy_p2p_write(encoder, INTEL_LT_PHY_LANE1, LT_PHY_TXY_CTL10(0),
+ LT_PHY_TX_LANE_ENABLE, LT_PHY_TXY_CTL10_MAC(0),
+ LT_PHY_TX_LANE_ENABLE);
+ } else {
+ intel_lt_phy_p2p_write(encoder, INTEL_LT_PHY_LANE1, LT_PHY_TXY_CTL10(0),
+ 0, LT_PHY_TXY_CTL10_MAC(0), 0);
+ }
+
+ if (transmitter_mask & BIT(3)) {
+ intel_lt_phy_p2p_write(encoder, INTEL_LT_PHY_LANE1, LT_PHY_TXY_CTL10(1),
+ LT_PHY_TX_LANE_ENABLE, LT_PHY_TXY_CTL10_MAC(1),
+ LT_PHY_TX_LANE_ENABLE);
+ } else {
+ intel_lt_phy_p2p_write(encoder, INTEL_LT_PHY_LANE1, LT_PHY_TXY_CTL10(1),
+ 0, LT_PHY_TXY_CTL10_MAC(1), 0);
+ }
+}
+
+void intel_lt_phy_pll_enable(struct intel_encoder *encoder,
+ const struct intel_crtc_state *crtc_state)
+{
+ struct intel_display *display = to_intel_display(encoder);
+ struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
+ bool lane_reversal = dig_port->lane_reversal;
+ u8 owned_lane_mask = intel_lt_phy_get_owned_lane_mask(encoder);
+ enum phy phy = intel_encoder_to_phy(encoder);
+ enum port port = encoder->port;
+ intel_wakeref_t wakeref = 0;
+ u32 lane_phy_pulse_status = owned_lane_mask == INTEL_LT_PHY_BOTH_LANES
+ ? (XE3PLPDP_LANE_PHY_PULSE_STATUS(0) |
+ XE3PLPDP_LANE_PHY_PULSE_STATUS(1))
+ : XE3PLPDP_LANE_PHY_PULSE_STATUS(0);
+ u8 rate_update;
+
+ wakeref = intel_lt_phy_transaction_begin(encoder);
+
+ /* 1. Enable MacCLK at default 162 MHz frequency. */
+ intel_lt_phy_lane_reset(encoder, crtc_state->lane_count);
+
+ /* 2. Program PORT_CLOCK_CTL register to configure clock muxes, gating, and SSC. */
+ intel_lt_phy_program_port_clock_ctl(encoder, crtc_state, lane_reversal);
+
+ /* 3. Change owned PHY lanes power to Ready state. */
+ intel_lt_phy_powerdown_change_sequence(encoder, owned_lane_mask,
+ XELPDP_P2_STATE_READY);
+
+ /*
+ * 4. Read the PHY message bus VDR register PHY_VDR_0_Config check enabled PLL type,
+ * encoded rate and encoded mode.
+ */
+ if (intel_lt_phy_config_changed(encoder, crtc_state)) {
+ /*
+ * 5. Program the PHY internal PLL registers over PHY message bus for the desired
+ * frequency and protocol type
+ */
+ intel_lt_phy_program_pll(encoder, crtc_state);
+
+ /* 6. Use the P2P transaction flow */
+ /*
+ * 6.1. Set the PHY VDR register 0xCC4[Rate Control VDR Update] = 1 over PHY message
+ * bus for Owned PHY Lanes.
+ */
+ /*
+ * 6.2. Poll for P2P Transaction Ready = "1" and read the MAC message bus VDR
+ * register at offset 0xC00 for Owned PHY Lanes*.
+ */
+ /* 6.3. Clear P2P transaction Ready bit. */
+ intel_lt_phy_p2p_write(encoder, owned_lane_mask, LT_PHY_RATE_UPDATE,
+ LT_PHY_RATE_CONTROL_VDR_UPDATE, LT_PHY_MAC_VDR,
+ LT_PHY_PCLKIN_GATE);
+
+ /* 7. Program PORT_CLOCK_CTL[PCLK PLL Request LN0] = 0. */
+ intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, port),
+ XELPDP_LANE_PCLK_PLL_REQUEST(0), 0);
+
+ /* 8. Poll for PORT_CLOCK_CTL[PCLK PLL Ack LN0]= 0. */
+ if (intel_de_wait_for_clear_us(display, XELPDP_PORT_CLOCK_CTL(display, port),
+ XELPDP_LANE_PCLK_PLL_ACK(0),
+ XE3PLPD_MACCLK_TURNOFF_LATENCY_US))
+ drm_warn(display->drm, "PHY %c PLL MacCLK ack deassertion timeout\n",
+ phy_name(phy));
+
+ /*
+ * 9. Follow the Display Voltage Frequency Switching - Sequence Before Frequency
+ * Change. We handle this step in bxt_set_cdclk().
+ */
+ /* 10. Program DDI_CLK_VALFREQ to match intended DDI clock frequency. */
+ intel_de_write(display, DDI_CLK_VALFREQ(encoder->port),
+ crtc_state->port_clock);
+
+ /* 11. Program PORT_CLOCK_CTL[PCLK PLL Request LN0] = 1. */
+ intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, port),
+ XELPDP_LANE_PCLK_PLL_REQUEST(0),
+ XELPDP_LANE_PCLK_PLL_REQUEST(0));
+
+ /* 12. Poll for PORT_CLOCK_CTL[PCLK PLL Ack LN0]= 1. */
+ if (intel_de_wait_for_set_ms(display, XELPDP_PORT_CLOCK_CTL(display, port),
+ XELPDP_LANE_PCLK_PLL_ACK(0),
+ XE3PLPD_MACCLK_TURNON_LATENCY_MS))
+ drm_warn(display->drm, "PHY %c PLL MacCLK ack assertion timeout\n",
+ phy_name(phy));
+
+ /*
+ * 13. Ungate the forward clock by setting
+ * PORT_CLOCK_CTL[Forward Clock Ungate] = 1.
+ */
+ intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, port),
+ XELPDP_FORWARD_CLOCK_UNGATE,
+ XELPDP_FORWARD_CLOCK_UNGATE);
+
+ /* 14. SW clears PORT_BUF_CTL2 [PHY Pulse Status]. */
+ intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port),
+ lane_phy_pulse_status,
+ lane_phy_pulse_status);
+ /*
+ * 15. Clear the PHY VDR register 0xCC4[Rate Control VDR Update] over
+ * PHY message bus for Owned PHY Lanes.
+ */
+ rate_update = intel_lt_phy_read(encoder, INTEL_LT_PHY_LANE0, LT_PHY_RATE_UPDATE);
+ rate_update &= ~LT_PHY_RATE_CONTROL_VDR_UPDATE;
+ intel_lt_phy_write(encoder, owned_lane_mask, LT_PHY_RATE_UPDATE,
+ rate_update, MB_WRITE_COMMITTED);
+
+ /* 16. Poll for PORT_BUF_CTL2 register PHY Pulse Status = 1 for Owned PHY Lanes. */
+ if (intel_de_wait_for_set_ms(display, XELPDP_PORT_BUF_CTL2(display, port),
+ lane_phy_pulse_status,
+ XE3PLPD_RATE_CALIB_DONE_LATENCY_MS))
+ drm_warn(display->drm, "PHY %c PLL rate not changed\n",
+ phy_name(phy));
+
+ /* 17. SW clears PORT_BUF_CTL2 [PHY Pulse Status]. */
+ intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port),
+ lane_phy_pulse_status,
+ lane_phy_pulse_status);
+ } else {
+ intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), crtc_state->port_clock);
+ }
+
+ /*
+ * 18. Follow the Display Voltage Frequency Switching - Sequence After Frequency Change.
+ * We handle this step in bxt_set_cdclk()
+ */
+ /* 19. Move the PHY powerdown state to Active and program to enable/disable transmitters */
+ intel_lt_phy_powerdown_change_sequence(encoder, owned_lane_mask,
+ XELPDP_P0_STATE_ACTIVE);
+
+ intel_lt_phy_enable_disable_tx(encoder, crtc_state);
+ intel_lt_phy_transaction_end(encoder, wakeref);
+}
+
+void intel_lt_phy_pll_disable(struct intel_encoder *encoder)
+{
+ struct intel_display *display = to_intel_display(encoder);
+ enum phy phy = intel_encoder_to_phy(encoder);
+ enum port port = encoder->port;
+ intel_wakeref_t wakeref;
+ u8 owned_lane_mask = intel_lt_phy_get_owned_lane_mask(encoder);
+ u32 lane_pipe_reset = owned_lane_mask == INTEL_LT_PHY_BOTH_LANES
+ ? (XELPDP_LANE_PIPE_RESET(0) |
+ XELPDP_LANE_PIPE_RESET(1))
+ : XELPDP_LANE_PIPE_RESET(0);
+ u32 lane_phy_current_status = owned_lane_mask == INTEL_LT_PHY_BOTH_LANES
+ ? (XELPDP_LANE_PHY_CURRENT_STATUS(0) |
+ XELPDP_LANE_PHY_CURRENT_STATUS(1))
+ : XELPDP_LANE_PHY_CURRENT_STATUS(0);
+ u32 lane_phy_pulse_status = owned_lane_mask == INTEL_LT_PHY_BOTH_LANES
+ ? (XE3PLPDP_LANE_PHY_PULSE_STATUS(0) |
+ XE3PLPDP_LANE_PHY_PULSE_STATUS(1))
+ : XE3PLPDP_LANE_PHY_PULSE_STATUS(0);
+
+ wakeref = intel_lt_phy_transaction_begin(encoder);
+
+ /* 1. Clear PORT_BUF_CTL2 [PHY Pulse Status]. */
+ intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port),
+ lane_phy_pulse_status,
+ lane_phy_pulse_status);
+
+ /* 2. Set PORT_BUF_CTL2<port> Lane<PHY Lanes Owned> Pipe Reset to 1. */
+ intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_pipe_reset,
+ lane_pipe_reset);
+
+ /* 3. Poll for PORT_BUF_CTL2<port> Lane<PHY Lanes Owned> PHY Current Status == 1. */
+ if (intel_de_wait_for_set_us(display, XELPDP_PORT_BUF_CTL2(display, port),
+ lane_phy_current_status,
+ XE3PLPD_RESET_START_LATENCY_US))
+ drm_warn(display->drm, "PHY %c failed to reset lane\n",
+ phy_name(phy));
+
+ /* 4. Clear for PHY pulse status on owned PHY lanes. */
+ intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port),
+ lane_phy_pulse_status,
+ lane_phy_pulse_status);
+
+ /*
+ * 5. Follow the Display Voltage Frequency Switching -
+ * Sequence Before Frequency Change. We handle this step in bxt_set_cdclk().
+ */
+ /* 6. Program PORT_CLOCK_CTL[PCLK PLL Request LN0] = 0. */
+ intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, port),
+ XELPDP_LANE_PCLK_PLL_REQUEST(0), 0);
+
+ /* 7. Program DDI_CLK_VALFREQ to 0. */
+ intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), 0);
+
+ /* 8. Poll for PORT_CLOCK_CTL[PCLK PLL Ack LN0]= 0. */
+ if (intel_de_wait_for_clear_us(display, XELPDP_PORT_CLOCK_CTL(display, port),
+ XELPDP_LANE_PCLK_PLL_ACK(0),
+ XE3PLPD_MACCLK_TURNOFF_LATENCY_US))
+ drm_warn(display->drm, "PHY %c PLL MacCLK ack deassertion timeout\n",
+ phy_name(phy));
+
+ /*
+ * 9. Follow the Display Voltage Frequency Switching -
+ * Sequence After Frequency Change. We handle this step in bxt_set_cdclk().
+ */
+ /* 10. Program PORT_CLOCK_CTL register to disable and gate clocks. */
+ intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, port),
+ XELPDP_DDI_CLOCK_SELECT_MASK(display) | XELPDP_FORWARD_CLOCK_UNGATE, 0);
+
+ /* 11. Program PORT_BUF_CTL5[MacCLK Reset_0] = 1 to assert MacCLK reset. */
+ intel_de_rmw(display, XE3PLPD_PORT_BUF_CTL5(port),
+ XE3PLPD_MACCLK_RESET_0, XE3PLPD_MACCLK_RESET_0);
+
+ intel_lt_phy_transaction_end(encoder, wakeref);
+}
+
+void intel_lt_phy_set_signal_levels(struct intel_encoder *encoder,
+ const struct intel_crtc_state *crtc_state)
+{
+ struct intel_display *display = to_intel_display(encoder);
+ const struct intel_ddi_buf_trans *trans;
+ u8 owned_lane_mask;
+ intel_wakeref_t wakeref;
+ int n_entries, ln;
+ struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
+
+ if (intel_tc_port_in_tbt_alt_mode(dig_port))
+ return;
+
+ owned_lane_mask = intel_lt_phy_get_owned_lane_mask(encoder);
+
+ wakeref = intel_lt_phy_transaction_begin(encoder);
+
+ trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
+ if (drm_WARN_ON_ONCE(display->drm, !trans)) {
+ intel_lt_phy_transaction_end(encoder, wakeref);
+ return;
+ }
+
+ for (ln = 0; ln < crtc_state->lane_count; ln++) {
+ int level = intel_ddi_level(encoder, crtc_state, ln);
+ int lane = ln / 2;
+ int tx = ln % 2;
+ u8 lane_mask = lane == 0 ? INTEL_LT_PHY_LANE0 : INTEL_LT_PHY_LANE1;
+
+ if (!(lane_mask & owned_lane_mask))
+ continue;
+
+ intel_lt_phy_rmw(encoder, lane_mask, LT_PHY_TXY_CTL8(tx),
+ LT_PHY_TX_SWING_LEVEL_MASK | LT_PHY_TX_SWING_MASK,
+ LT_PHY_TX_SWING_LEVEL(trans->entries[level].lt.txswing_level) |
+ LT_PHY_TX_SWING(trans->entries[level].lt.txswing),
+ MB_WRITE_COMMITTED);
+
+ intel_lt_phy_rmw(encoder, lane_mask, LT_PHY_TXY_CTL2(tx),
+ LT_PHY_TX_CURSOR_MASK,
+ LT_PHY_TX_CURSOR(trans->entries[level].lt.pre_cursor),
+ MB_WRITE_COMMITTED);
+ intel_lt_phy_rmw(encoder, lane_mask, LT_PHY_TXY_CTL3(tx),
+ LT_PHY_TX_CURSOR_MASK,
+ LT_PHY_TX_CURSOR(trans->entries[level].lt.main_cursor),
+ MB_WRITE_COMMITTED);
+ intel_lt_phy_rmw(encoder, lane_mask, LT_PHY_TXY_CTL4(tx),
+ LT_PHY_TX_CURSOR_MASK,
+ LT_PHY_TX_CURSOR(trans->entries[level].lt.post_cursor),
+ MB_WRITE_COMMITTED);
+ }
+
+ intel_lt_phy_transaction_end(encoder, wakeref);
+}
+
+void intel_lt_phy_dump_hw_state(struct intel_display *display,
+ const struct intel_lt_phy_pll_state *hw_state)
+{
+ int i, j;
+
+ drm_dbg_kms(display->drm, "lt_phy_pll_hw_state:\n");
+ for (i = 0; i < 3; i++) {
+ drm_dbg_kms(display->drm, "config[%d] = 0x%.4x,\n",
+ i, hw_state->config[i]);
+ }
+
+ for (i = 0; i <= 12; i++)
+ for (j = 3; j >= 0; j--)
+ drm_dbg_kms(display->drm, "vdr_data[%d][%d] = 0x%.4x,\n",
+ i, j, hw_state->data[i][j]);
+}
+
+bool
+intel_lt_phy_pll_compare_hw_state(const struct intel_lt_phy_pll_state *a,
+ const struct intel_lt_phy_pll_state *b)
+{
+ if (memcmp(&a->config, &b->config, sizeof(a->config)) != 0)
+ return false;
+
+ if (memcmp(&a->data, &b->data, sizeof(a->data)) != 0)
+ return false;
+
+ return true;
+}
+
+void intel_lt_phy_pll_readout_hw_state(struct intel_encoder *encoder,
+ const struct intel_crtc_state *crtc_state,
+ struct intel_lt_phy_pll_state *pll_state)
+{
+ u8 owned_lane_mask;
+ u8 lane;
+ intel_wakeref_t wakeref;
+ int i, j, k;
+
+ pll_state->tbt_mode = intel_tc_port_in_tbt_alt_mode(enc_to_dig_port(encoder));
+ if (pll_state->tbt_mode)
+ return;
+
+ owned_lane_mask = intel_lt_phy_get_owned_lane_mask(encoder);
+ lane = owned_lane_mask & INTEL_LT_PHY_LANE0 ? : INTEL_LT_PHY_LANE1;
+ wakeref = intel_lt_phy_transaction_begin(encoder);
+
+ pll_state->config[0] = intel_lt_phy_read(encoder, lane, LT_PHY_VDR_0_CONFIG);
+ pll_state->config[1] = intel_lt_phy_read(encoder, INTEL_LT_PHY_LANE0, LT_PHY_VDR_1_CONFIG);
+ pll_state->config[2] = intel_lt_phy_read(encoder, lane, LT_PHY_VDR_2_CONFIG);
+
+ for (i = 0; i <= 12; i++) {
+ for (j = 3, k = 0; j >= 0; j--, k++)
+ pll_state->data[i][k] =
+ intel_lt_phy_read(encoder, INTEL_LT_PHY_LANE0,
+ LT_PHY_VDR_X_DATAY(i, j));
+ }
+
+ pll_state->clock =
+ intel_lt_phy_calc_port_clock(encoder, crtc_state);
+ intel_lt_phy_transaction_end(encoder, wakeref);
+}
+
+void intel_lt_phy_pll_state_verify(struct intel_atomic_state *state,
+ struct intel_crtc *crtc)
+{
+ struct intel_display *display = to_intel_display(state);
+ struct intel_digital_port *dig_port;
+ const struct intel_crtc_state *new_crtc_state =
+ intel_atomic_get_new_crtc_state(state, crtc);
+ struct intel_encoder *encoder;
+ struct intel_lt_phy_pll_state pll_hw_state = {};
+ const struct intel_lt_phy_pll_state *pll_sw_state = &new_crtc_state->dpll_hw_state.ltpll;
+ int clock;
+ int i, j;
+
+ if (DISPLAY_VER(display) < 35)
+ return;
+
+ if (!new_crtc_state->hw.active)
+ return;
+
+ /* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
+ if (!intel_crtc_needs_modeset(new_crtc_state) &&
+ !intel_crtc_needs_fastset(new_crtc_state))
+ return;
+
+ encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
+ intel_lt_phy_pll_readout_hw_state(encoder, new_crtc_state, &pll_hw_state);
+ clock = intel_lt_phy_calc_port_clock(encoder, new_crtc_state);
+
+ dig_port = enc_to_dig_port(encoder);
+ if (intel_tc_port_in_tbt_alt_mode(dig_port))
+ return;
+
+ INTEL_DISPLAY_STATE_WARN(display, pll_hw_state.clock != clock,
+ "[CRTC:%d:%s] mismatch in LT PHY: Register CLOCK (expected %d, found %d)",
+ crtc->base.base.id, crtc->base.name,
+ pll_sw_state->clock, pll_hw_state.clock);
+
+ for (i = 0; i < 3; i++) {
+ INTEL_DISPLAY_STATE_WARN(display, pll_hw_state.config[i] != pll_sw_state->config[i],
+ "[CRTC:%d:%s] mismatch in LT PHY PLL CONFIG%d: (expected 0x%04x, found 0x%04x)",
+ crtc->base.base.id, crtc->base.name, i,
+ pll_sw_state->config[i], pll_hw_state.config[i]);
+ }
+
+ for (i = 0; i <= 12; i++) {
+ for (j = 3; j >= 0; j--)
+ INTEL_DISPLAY_STATE_WARN(display,
+ pll_hw_state.data[i][j] !=
+ pll_sw_state->data[i][j],
+ "[CRTC:%d:%s] mismatch in LT PHY PLL DATA[%d][%d]: (expected 0x%04x, found 0x%04x)",
+ crtc->base.base.id, crtc->base.name, i, j,
+ pll_sw_state->data[i][j], pll_hw_state.data[i][j]);
+ }
+}
+
+void intel_xe3plpd_pll_enable(struct intel_encoder *encoder,
+ const struct intel_crtc_state *crtc_state)
+{
+ struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
+
+ if (intel_tc_port_in_tbt_alt_mode(dig_port))
+ intel_mtl_tbt_pll_enable(encoder, crtc_state);
+ else
+ intel_lt_phy_pll_enable(encoder, crtc_state);
+}
+
+void intel_xe3plpd_pll_disable(struct intel_encoder *encoder)
+{
+ struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
+
+ if (intel_tc_port_in_tbt_alt_mode(dig_port))
+ intel_mtl_tbt_pll_disable(encoder);
+ else
+ intel_lt_phy_pll_disable(encoder);
+
+}