summaryrefslogtreecommitdiff
path: root/rust/kernel/list.rs
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2025-03-30 17:03:26 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2025-03-30 17:03:26 -0700
commit4e82c87058f45e79eeaa4d5bcc3b38dd3dce7209 (patch)
tree122868ae62bfff4d0ed9f13c853c1c9690dbe0f3 /rust/kernel/list.rs
parent01d5b167dc230cf3b6eb9dd7205f6a705026d1ce (diff)
parente6ea10d5dbe082c54add289b44f08c9fcfe658af (diff)
Merge tag 'rust-6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ojeda/linux
Pull Rust updates from Miguel Ojeda: "Toolchain and infrastructure: - Extract the 'pin-init' API from the 'kernel' crate and make it into a standalone crate. In order to do this, the contents are rearranged so that they can easily be kept in sync with the version maintained out-of-tree that other projects have started to use too (or plan to, like QEMU). This will reduce the maintenance burden for Benno, who will now have his own sub-tree, and will simplify future expected changes like the move to use 'syn' to simplify the implementation. - Add '#[test]'-like support based on KUnit. We already had doctests support based on KUnit, which takes the examples in our Rust documentation and runs them under KUnit. Now, we are adding the beginning of the support for "normal" tests, similar to those the '#[test]' tests in userspace Rust. For instance: #[kunit_tests(my_suite)] mod tests { #[test] fn my_test() { assert_eq!(1 + 1, 2); } } Unlike with doctests, the 'assert*!'s do not map to the KUnit assertion APIs yet. - Check Rust signatures at compile time for functions called from C by name. In particular, introduce a new '#[export]' macro that can be placed in the Rust function definition. It will ensure that the function declaration on the C side matches the signature on the Rust function: #[export] pub unsafe extern "C" fn my_function(a: u8, b: i32) -> usize { // ... } The macro essentially forces the compiler to compare the types of the actual Rust function and the 'bindgen'-processed C signature. These cases are rare so far. In the future, we may consider introducing another tool, 'cbindgen', to generate C headers automatically. Even then, having these functions explicitly marked may be a good idea anyway. - Enable the 'raw_ref_op' Rust feature: it is already stable, and allows us to use the new '&raw' syntax, avoiding a couple macros. After everyone has migrated, we will disallow the macros. - Pass the correct target to 'bindgen' on Usermode Linux. - Fix 'rusttest' build in macOS. 'kernel' crate: - New 'hrtimer' module: add support for setting up intrusive timers without allocating when starting the timer. Add support for 'Pin<Box<_>>', 'Arc<_>', 'Pin<&_>' and 'Pin<&mut _>' as pointer types for use with timer callbacks. Add support for setting clock source and timer mode. - New 'dma' module: add a simple DMA coherent allocator abstraction and a test sample driver. - 'list' module: make the linked list 'Cursor' point between elements, rather than at an element, which is more convenient to us and allows for cursors to empty lists; and document it with examples of how to perform common operations with the provided methods. - 'str' module: implement a few traits for 'BStr' as well as the 'strip_prefix()' method. - 'sync' module: add 'Arc::as_ptr'. - 'alloc' module: add 'Box::into_pin'. - 'error' module: extend the 'Result' documentation, including a few examples on different ways of handling errors, a warning about using methods that may panic, and links to external documentation. 'macros' crate: - 'module' macro: add the 'authors' key to support multiple authors. The original key will be kept until everyone has migrated. Documentation: - Add error handling sections. MAINTAINERS: - Add Danilo Krummrich as reviewer of the Rust "subsystem". - Add 'RUST [PIN-INIT]' entry with Benno Lossin as maintainer. It has its own sub-tree. - Add sub-tree for 'RUST [ALLOC]'. - Add 'DMA MAPPING HELPERS DEVICE DRIVER API [RUST]' entry with Abdiel Janulgue as primary maintainer. It will go through the sub-tree of the 'RUST [ALLOC]' entry. - Add 'HIGH-RESOLUTION TIMERS [RUST]' entry with Andreas Hindborg as maintainer. It has its own sub-tree. And a few other cleanups and improvements" * tag 'rust-6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ojeda/linux: (71 commits) rust: dma: add `Send` implementation for `CoherentAllocation` rust: macros: fix `make rusttest` build on macOS rust: block: refactor to use `&raw mut` rust: enable `raw_ref_op` feature rust: uaccess: name the correct function rust: rbtree: fix comments referring to Box instead of KBox rust: hrtimer: add maintainer entry rust: hrtimer: add clocksource selection through `ClockId` rust: hrtimer: add `HrTimerMode` rust: hrtimer: implement `HrTimerPointer` for `Pin<Box<T>>` rust: alloc: add `Box::into_pin` rust: hrtimer: implement `UnsafeHrTimerPointer` for `Pin<&mut T>` rust: hrtimer: implement `UnsafeHrTimerPointer` for `Pin<&T>` rust: hrtimer: add `hrtimer::ScopedHrTimerPointer` rust: hrtimer: add `UnsafeHrTimerPointer` rust: hrtimer: allow timer restart from timer handler rust: str: implement `strip_prefix` for `BStr` rust: str: implement `AsRef<BStr>` for `[u8]` and `BStr` rust: str: implement `Index` for `BStr` rust: str: implement `PartialEq` for `BStr` ...
Diffstat (limited to 'rust/kernel/list.rs')
-rw-r--r--rust/kernel/list.rs473
1 files changed, 380 insertions, 93 deletions
diff --git a/rust/kernel/list.rs b/rust/kernel/list.rs
index fb93330f4af4..a335c3b1ff5e 100644
--- a/rust/kernel/list.rs
+++ b/rust/kernel/list.rs
@@ -4,12 +4,12 @@
//! A linked list implementation.
-use crate::init::PinInit;
use crate::sync::ArcBorrow;
use crate::types::Opaque;
use core::iter::{DoubleEndedIterator, FusedIterator};
use core::marker::PhantomData;
use core::ptr;
+use pin_init::PinInit;
mod impl_list_item_mod;
pub use self::impl_list_item_mod::{
@@ -245,8 +245,20 @@ impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
self.first.is_null()
}
- /// Add the provided item to the back of the list.
- pub fn push_back(&mut self, item: ListArc<T, ID>) {
+ /// Inserts `item` before `next` in the cycle.
+ ///
+ /// Returns a pointer to the newly inserted element. Never changes `self.first` unless the list
+ /// is empty.
+ ///
+ /// # Safety
+ ///
+ /// * `next` must be an element in this list or null.
+ /// * if `next` is null, then the list must be empty.
+ unsafe fn insert_inner(
+ &mut self,
+ item: ListArc<T, ID>,
+ next: *mut ListLinksFields,
+ ) -> *mut ListLinksFields {
let raw_item = ListArc::into_raw(item);
// SAFETY:
// * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
@@ -259,16 +271,16 @@ impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
// SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
let item = unsafe { ListLinks::fields(list_links) };
- if self.first.is_null() {
- self.first = item;
+ // Check if the list is empty.
+ if next.is_null() {
// SAFETY: The caller just gave us ownership of these fields.
// INVARIANT: A linked list with one item should be cyclic.
unsafe {
(*item).next = item;
(*item).prev = item;
}
+ self.first = item;
} else {
- let next = self.first;
// SAFETY: By the type invariant, this pointer is valid or null. We just checked that
// it's not null, so it must be valid.
let prev = unsafe { (*next).prev };
@@ -282,45 +294,27 @@ impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
(*next).prev = item;
}
}
+
+ item
+ }
+
+ /// Add the provided item to the back of the list.
+ pub fn push_back(&mut self, item: ListArc<T, ID>) {
+ // SAFETY:
+ // * `self.first` is null or in the list.
+ // * `self.first` is only null if the list is empty.
+ unsafe { self.insert_inner(item, self.first) };
}
/// Add the provided item to the front of the list.
pub fn push_front(&mut self, item: ListArc<T, ID>) {
- let raw_item = ListArc::into_raw(item);
// SAFETY:
- // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
- // * If this requirement is violated, then the previous caller of `prepare_to_insert`
- // violated the safety requirement that they can't give up ownership of the `ListArc`
- // until they call `post_remove`.
- // * We own the `ListArc`.
- // * Removing items] from this list is always done using `remove_internal_inner`, which
- // calls `post_remove` before giving up ownership.
- let list_links = unsafe { T::prepare_to_insert(raw_item) };
- // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
- let item = unsafe { ListLinks::fields(list_links) };
+ // * `self.first` is null or in the list.
+ // * `self.first` is only null if the list is empty.
+ let new_elem = unsafe { self.insert_inner(item, self.first) };
- if self.first.is_null() {
- // SAFETY: The caller just gave us ownership of these fields.
- // INVARIANT: A linked list with one item should be cyclic.
- unsafe {
- (*item).next = item;
- (*item).prev = item;
- }
- } else {
- let next = self.first;
- // SAFETY: We just checked that `next` is non-null.
- let prev = unsafe { (*next).prev };
- // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
- // ownership of the fields on `item`.
- // INVARIANT: This correctly inserts `item` between `prev` and `next`.
- unsafe {
- (*item).next = next;
- (*item).prev = prev;
- (*prev).next = item;
- (*next).prev = item;
- }
- }
- self.first = item;
+ // INVARIANT: `new_elem` is in the list because we just inserted it.
+ self.first = new_elem;
}
/// Removes the last item from this list.
@@ -489,17 +483,21 @@ impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
other.first = ptr::null_mut();
}
- /// Returns a cursor to the first element of the list.
- ///
- /// If the list is empty, this returns `None`.
- pub fn cursor_front(&mut self) -> Option<Cursor<'_, T, ID>> {
- if self.first.is_null() {
- None
- } else {
- Some(Cursor {
- current: self.first,
- list: self,
- })
+ /// Returns a cursor that points before the first element of the list.
+ pub fn cursor_front(&mut self) -> Cursor<'_, T, ID> {
+ // INVARIANT: `self.first` is in this list.
+ Cursor {
+ next: self.first,
+ list: self,
+ }
+ }
+
+ /// Returns a cursor that points after the last element in the list.
+ pub fn cursor_back(&mut self) -> Cursor<'_, T, ID> {
+ // INVARIANT: `next` is allowed to be null.
+ Cursor {
+ next: core::ptr::null_mut(),
+ list: self,
}
}
@@ -579,69 +577,358 @@ impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
/// A cursor into a [`List`].
///
+/// A cursor always rests between two elements in the list. This means that a cursor has a previous
+/// and next element, but no current element. It also means that it's possible to have a cursor
+/// into an empty list.
+///
+/// # Examples
+///
+/// ```
+/// use kernel::prelude::*;
+/// use kernel::list::{List, ListArc, ListLinks};
+///
+/// #[pin_data]
+/// struct ListItem {
+/// value: u32,
+/// #[pin]
+/// links: ListLinks,
+/// }
+///
+/// impl ListItem {
+/// fn new(value: u32) -> Result<ListArc<Self>> {
+/// ListArc::pin_init(try_pin_init!(Self {
+/// value,
+/// links <- ListLinks::new(),
+/// }), GFP_KERNEL)
+/// }
+/// }
+///
+/// kernel::list::impl_has_list_links! {
+/// impl HasListLinks<0> for ListItem { self.links }
+/// }
+/// kernel::list::impl_list_arc_safe! {
+/// impl ListArcSafe<0> for ListItem { untracked; }
+/// }
+/// kernel::list::impl_list_item! {
+/// impl ListItem<0> for ListItem { using ListLinks; }
+/// }
+///
+/// // Use a cursor to remove the first element with the given value.
+/// fn remove_first(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
+/// let mut cursor = list.cursor_front();
+/// while let Some(next) = cursor.peek_next() {
+/// if next.value == value {
+/// return Some(next.remove());
+/// }
+/// cursor.move_next();
+/// }
+/// None
+/// }
+///
+/// // Use a cursor to remove the last element with the given value.
+/// fn remove_last(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
+/// let mut cursor = list.cursor_back();
+/// while let Some(prev) = cursor.peek_prev() {
+/// if prev.value == value {
+/// return Some(prev.remove());
+/// }
+/// cursor.move_prev();
+/// }
+/// None
+/// }
+///
+/// // Use a cursor to remove all elements with the given value. The removed elements are moved to
+/// // a new list.
+/// fn remove_all(list: &mut List<ListItem>, value: u32) -> List<ListItem> {
+/// let mut out = List::new();
+/// let mut cursor = list.cursor_front();
+/// while let Some(next) = cursor.peek_next() {
+/// if next.value == value {
+/// out.push_back(next.remove());
+/// } else {
+/// cursor.move_next();
+/// }
+/// }
+/// out
+/// }
+///
+/// // Use a cursor to insert a value at a specific index. Returns an error if the index is out of
+/// // bounds.
+/// fn insert_at(list: &mut List<ListItem>, new: ListArc<ListItem>, idx: usize) -> Result {
+/// let mut cursor = list.cursor_front();
+/// for _ in 0..idx {
+/// if !cursor.move_next() {
+/// return Err(EINVAL);
+/// }
+/// }
+/// cursor.insert_next(new);
+/// Ok(())
+/// }
+///
+/// // Merge two sorted lists into a single sorted list.
+/// fn merge_sorted(list: &mut List<ListItem>, merge: List<ListItem>) {
+/// let mut cursor = list.cursor_front();
+/// for to_insert in merge {
+/// while let Some(next) = cursor.peek_next() {
+/// if to_insert.value < next.value {
+/// break;
+/// }
+/// cursor.move_next();
+/// }
+/// cursor.insert_prev(to_insert);
+/// }
+/// }
+///
+/// let mut list = List::new();
+/// list.push_back(ListItem::new(14)?);
+/// list.push_back(ListItem::new(12)?);
+/// list.push_back(ListItem::new(10)?);
+/// list.push_back(ListItem::new(12)?);
+/// list.push_back(ListItem::new(15)?);
+/// list.push_back(ListItem::new(14)?);
+/// assert_eq!(remove_all(&mut list, 12).iter().count(), 2);
+/// // [14, 10, 15, 14]
+/// assert!(remove_first(&mut list, 14).is_some());
+/// // [10, 15, 14]
+/// insert_at(&mut list, ListItem::new(12)?, 2)?;
+/// // [10, 15, 12, 14]
+/// assert!(remove_last(&mut list, 15).is_some());
+/// // [10, 12, 14]
+///
+/// let mut list2 = List::new();
+/// list2.push_back(ListItem::new(11)?);
+/// list2.push_back(ListItem::new(13)?);
+/// merge_sorted(&mut list, list2);
+///
+/// let mut items = list.into_iter();
+/// assert_eq!(items.next().unwrap().value, 10);
+/// assert_eq!(items.next().unwrap().value, 11);
+/// assert_eq!(items.next().unwrap().value, 12);
+/// assert_eq!(items.next().unwrap().value, 13);
+/// assert_eq!(items.next().unwrap().value, 14);
+/// assert!(items.next().is_none());
+/// # Result::<(), Error>::Ok(())
+/// ```
+///
/// # Invariants
///
-/// The `current` pointer points a value in `list`.
+/// The `next` pointer is null or points a value in `list`.
pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
- current: *mut ListLinksFields,
list: &'a mut List<T, ID>,
+ /// Points at the element after this cursor, or null if the cursor is after the last element.
+ next: *mut ListLinksFields,
}
impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
- /// Access the current element of this cursor.
- pub fn current(&self) -> ArcBorrow<'_, T> {
- // SAFETY: The `current` pointer points a value in the list.
- let me = unsafe { T::view_value(ListLinks::from_fields(self.current)) };
- // SAFETY:
- // * All values in a list are stored in an `Arc`.
- // * The value cannot be removed from the list for the duration of the lifetime annotated
- // on the returned `ArcBorrow`, because removing it from the list would require mutable
- // access to the cursor or the list. However, the `ArcBorrow` holds an immutable borrow
- // on the cursor, which in turn holds a mutable borrow on the list, so any such
- // mutable access requires first releasing the immutable borrow on the cursor.
- // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
- // reference, and `UniqueArc` references must be unique.
- unsafe { ArcBorrow::from_raw(me) }
+ /// Returns a pointer to the element before the cursor.
+ ///
+ /// Returns null if there is no element before the cursor.
+ fn prev_ptr(&self) -> *mut ListLinksFields {
+ let mut next = self.next;
+ let first = self.list.first;
+ if next == first {
+ // We are before the first element.
+ return core::ptr::null_mut();
+ }
+
+ if next.is_null() {
+ // We are after the last element, so we need a pointer to the last element, which is
+ // the same as `(*first).prev`.
+ next = first;
+ }
+
+ // SAFETY: `next` can't be null, because then `first` must also be null, but in that case
+ // we would have exited at the `next == first` check. Thus, `next` is an element in the
+ // list, so we can access its `prev` pointer.
+ unsafe { (*next).prev }
+ }
+
+ /// Access the element after this cursor.
+ pub fn peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>> {
+ if self.next.is_null() {
+ return None;
+ }
+
+ // INVARIANT:
+ // * We just checked that `self.next` is non-null, so it must be in `self.list`.
+ // * `ptr` is equal to `self.next`.
+ Some(CursorPeek {
+ ptr: self.next,
+ cursor: self,
+ })
+ }
+
+ /// Access the element before this cursor.
+ pub fn peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>> {
+ let prev = self.prev_ptr();
+
+ if prev.is_null() {
+ return None;
+ }
+
+ // INVARIANT:
+ // * We just checked that `prev` is non-null, so it must be in `self.list`.
+ // * `self.prev_ptr()` never returns `self.next`.
+ Some(CursorPeek {
+ ptr: prev,
+ cursor: self,
+ })
}
- /// Move the cursor to the next element.
- pub fn next(self) -> Option<Cursor<'a, T, ID>> {
- // SAFETY: The `current` field is always in a list.
- let next = unsafe { (*self.current).next };
+ /// Move the cursor one element forward.
+ ///
+ /// If the cursor is after the last element, then this call does nothing. This call returns
+ /// `true` if the cursor's position was changed.
+ pub fn move_next(&mut self) -> bool {
+ if self.next.is_null() {
+ return false;
+ }
+
+ // SAFETY: `self.next` is an element in the list and we borrow the list mutably, so we can
+ // access the `next` field.
+ let mut next = unsafe { (*self.next).next };
if next == self.list.first {
- None
- } else {
- // INVARIANT: Since `self.current` is in the `list`, its `next` pointer is also in the
- // `list`.
- Some(Cursor {
- current: next,
- list: self.list,
- })
+ next = core::ptr::null_mut();
}
+
+ // INVARIANT: `next` is either null or the next element after an element in the list.
+ self.next = next;
+ true
}
- /// Move the cursor to the previous element.
- pub fn prev(self) -> Option<Cursor<'a, T, ID>> {
- // SAFETY: The `current` field is always in a list.
- let prev = unsafe { (*self.current).prev };
+ /// Move the cursor one element backwards.
+ ///
+ /// If the cursor is before the first element, then this call does nothing. This call returns
+ /// `true` if the cursor's position was changed.
+ pub fn move_prev(&mut self) -> bool {
+ if self.next == self.list.first {
+ return false;
+ }
- if self.current == self.list.first {
- None
+ // INVARIANT: `prev_ptr()` always returns a pointer that is null or in the list.
+ self.next = self.prev_ptr();
+ true
+ }
+
+ /// Inserts an element where the cursor is pointing and get a pointer to the new element.
+ fn insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields {
+ let ptr = if self.next.is_null() {
+ self.list.first
} else {
- // INVARIANT: Since `self.current` is in the `list`, its `prev` pointer is also in the
- // `list`.
- Some(Cursor {
- current: prev,
- list: self.list,
- })
+ self.next
+ };
+ // SAFETY:
+ // * `ptr` is an element in the list or null.
+ // * if `ptr` is null, then `self.list.first` is null so the list is empty.
+ let item = unsafe { self.list.insert_inner(item, ptr) };
+ if self.next == self.list.first {
+ // INVARIANT: We just inserted `item`, so it's a member of list.
+ self.list.first = item;
}
+ item
}
- /// Remove the current element from the list.
+ /// Insert an element at this cursor's location.
+ pub fn insert(mut self, item: ListArc<T, ID>) {
+ // This is identical to `insert_prev`, but consumes the cursor. This is helpful because it
+ // reduces confusion when the last operation on the cursor is an insertion; in that case,
+ // you just want to insert the element at the cursor, and it is confusing that the call
+ // involves the word prev or next.
+ self.insert_inner(item);
+ }
+
+ /// Inserts an element after this cursor.
+ ///
+ /// After insertion, the new element will be after the cursor.
+ pub fn insert_next(&mut self, item: ListArc<T, ID>) {
+ self.next = self.insert_inner(item);
+ }
+
+ /// Inserts an element before this cursor.
+ ///
+ /// After insertion, the new element will be before the cursor.
+ pub fn insert_prev(&mut self, item: ListArc<T, ID>) {
+ self.insert_inner(item);
+ }
+
+ /// Remove the next element from the list.
+ pub fn remove_next(&mut self) -> Option<ListArc<T, ID>> {
+ self.peek_next().map(|v| v.remove())
+ }
+
+ /// Remove the previous element from the list.
+ pub fn remove_prev(&mut self) -> Option<ListArc<T, ID>> {
+ self.peek_prev().map(|v| v.remove())
+ }
+}
+
+/// References the element in the list next to the cursor.
+///
+/// # Invariants
+///
+/// * `ptr` is an element in `self.cursor.list`.
+/// * `ISNEXT == (self.ptr == self.cursor.next)`.
+pub struct CursorPeek<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> {
+ cursor: &'a mut Cursor<'b, T, ID>,
+ ptr: *mut ListLinksFields,
+}
+
+impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64>
+ CursorPeek<'a, 'b, T, ISNEXT, ID>
+{
+ /// Remove the element from the list.
pub fn remove(self) -> ListArc<T, ID> {
- // SAFETY: The `current` pointer always points at a member of the list.
- unsafe { self.list.remove_internal(self.current) }
+ if ISNEXT {
+ self.cursor.move_next();
+ }
+
+ // INVARIANT: `self.ptr` is not equal to `self.cursor.next` due to the above `move_next`
+ // call.
+ // SAFETY: By the type invariants of `Self`, `next` is not null, so `next` is an element of
+ // `self.cursor.list` by the type invariants of `Cursor`.
+ unsafe { self.cursor.list.remove_internal(self.ptr) }
+ }
+
+ /// Access this value as an [`ArcBorrow`].
+ pub fn arc(&self) -> ArcBorrow<'_, T> {
+ // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
+ let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
+ // SAFETY:
+ // * All values in a list are stored in an `Arc`.
+ // * The value cannot be removed from the list for the duration of the lifetime annotated
+ // on the returned `ArcBorrow`, because removing it from the list would require mutable
+ // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `ArcBorrow` holds
+ // an immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
+ // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable
+ // access requires first releasing the immutable borrow on the `CursorPeek`.
+ // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
+ // reference, and `UniqueArc` references must be unique.
+ unsafe { ArcBorrow::from_raw(me) }
+ }
+}
+
+impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> core::ops::Deref
+ for CursorPeek<'a, 'b, T, ISNEXT, ID>
+{
+ // If you change the `ptr` field to have type `ArcBorrow<'a, T>`, it might seem like you could
+ // get rid of the `CursorPeek::arc` method and change the deref target to `ArcBorrow<'a, T>`.
+ // However, that doesn't work because 'a is too long. You could obtain an `ArcBorrow<'a, T>`
+ // and then call `CursorPeek::remove` without giving up the `ArcBorrow<'a, T>`, which would be
+ // unsound.
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
+ let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
+
+ // SAFETY: The value cannot be removed from the list for the duration of the lifetime
+ // annotated on the returned `&T`, because removing it from the list would require mutable
+ // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `&T` holds an
+ // immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
+ // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable access
+ // requires first releasing the immutable borrow on the `CursorPeek`.
+ unsafe { &*me }
}
}