1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2012-2013 Freescale Semiconductor, Inc.
*/
#include <linux/interrupt.h>
#include <linux/clockchips.h>
#include <linux/clk.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/sched_clock.h>
/*
* Each pit takes 0x10 Bytes register space
*/
#define PITMCR 0x00
#define PIT0_OFFSET 0x100
#define PIT_CH(n) (PIT0_OFFSET + 0x10 * (n))
#define PITLDVAL 0x00
#define PITCVAL 0x04
#define PITTCTRL 0x08
#define PITTFLG 0x0c
#define PITMCR_MDIS (0x1 << 1)
#define PITTCTRL_TEN (0x1 << 0)
#define PITTCTRL_TIE (0x1 << 1)
#define PITCTRL_CHN (0x1 << 2)
#define PITTFLG_TIF 0x1
struct pit_timer {
void __iomem *clksrc_base;
void __iomem *clkevt_base;
unsigned long cycle_per_jiffy;
struct clock_event_device ced;
struct clocksource cs;
};
static void __iomem *clksrc_base;
static inline struct pit_timer *ced_to_pit(struct clock_event_device *ced)
{
return container_of(ced, struct pit_timer, ced);
}
static inline void pit_timer_enable(struct pit_timer *pit)
{
writel(PITTCTRL_TEN | PITTCTRL_TIE, pit->clkevt_base + PITTCTRL);
}
static inline void pit_timer_disable(struct pit_timer *pit)
{
writel(0, pit->clkevt_base + PITTCTRL);
}
static inline void pit_irq_acknowledge(struct pit_timer *pit)
{
writel(PITTFLG_TIF, pit->clkevt_base + PITTFLG);
}
static u64 notrace pit_read_sched_clock(void)
{
return ~readl(clksrc_base + PITCVAL);
}
static int __init pit_clocksource_init(struct pit_timer *pit, void __iomem *base,
unsigned long rate)
{
/*
* The channels 0 and 1 can be chained to build a 64-bit
* timer. Let's use the channel 2 as a clocksource and leave
* the channels 0 and 1 unused for anyone else who needs them
*/
pit->clksrc_base = base + PIT_CH(2);
/* set the max load value and start the clock source counter */
writel(0, pit->clksrc_base + PITTCTRL);
writel(~0, pit->clksrc_base + PITLDVAL);
writel(PITTCTRL_TEN, pit->clksrc_base + PITTCTRL);
clksrc_base = pit->clksrc_base;
sched_clock_register(pit_read_sched_clock, 32, rate);
return clocksource_mmio_init(pit->clksrc_base + PITCVAL, "vf-pit", rate,
300, 32, clocksource_mmio_readl_down);
}
static int pit_set_next_event(unsigned long delta, struct clock_event_device *ced)
{
struct pit_timer *pit = ced_to_pit(ced);
/*
* set a new value to PITLDVAL register will not restart the timer,
* to abort the current cycle and start a timer period with the new
* value, the timer must be disabled and enabled again.
* and the PITLAVAL should be set to delta minus one according to pit
* hardware requirement.
*/
pit_timer_disable(pit);
writel(delta - 1, pit->clkevt_base + PITLDVAL);
pit_timer_enable(pit);
return 0;
}
static int pit_shutdown(struct clock_event_device *ced)
{
struct pit_timer *pit = ced_to_pit(ced);
pit_timer_disable(pit);
return 0;
}
static int pit_set_periodic(struct clock_event_device *ced)
{
struct pit_timer *pit = ced_to_pit(ced);
pit_set_next_event(pit->cycle_per_jiffy, ced);
return 0;
}
static irqreturn_t pit_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *ced = dev_id;
struct pit_timer *pit = ced_to_pit(ced);
pit_irq_acknowledge(pit);
/*
* pit hardware doesn't support oneshot, it will generate an interrupt
* and reload the counter value from PITLDVAL when PITCVAL reach zero,
* and start the counter again. So software need to disable the timer
* to stop the counter loop in ONESHOT mode.
*/
if (likely(clockevent_state_oneshot(ced)))
pit_timer_disable(pit);
ced->event_handler(ced);
return IRQ_HANDLED;
}
static int __init pit_clockevent_init(struct pit_timer *pit, void __iomem *base,
unsigned long rate, int irq, unsigned int cpu)
{
/*
* The channels 0 and 1 can be chained to build a 64-bit
* timer. Let's use the channel 3 as a clockevent and leave
* the channels 0 and 1 unused for anyone else who needs them
*/
pit->clkevt_base = base + PIT_CH(3);
pit->cycle_per_jiffy = rate / (HZ);
writel(0, pit->clkevt_base + PITTCTRL);
writel(PITTFLG_TIF, pit->clkevt_base + PITTFLG);
BUG_ON(request_irq(irq, pit_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL,
"VF pit timer", &pit->ced));
pit->ced.cpumask = cpumask_of(cpu);
pit->ced.irq = irq;
pit->ced.name = "VF pit timer";
pit->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
pit->ced.set_state_shutdown = pit_shutdown;
pit->ced.set_state_periodic = pit_set_periodic;
pit->ced.set_next_event = pit_set_next_event;
pit->ced.rating = 300;
/*
* The value for the LDVAL register trigger is calculated as:
* LDVAL trigger = (period / clock period) - 1
* The pit is a 32-bit down count timer, when the counter value
* reaches 0, it will generate an interrupt, thus the minimal
* LDVAL trigger value is 1. And then the min_delta is
* minimal LDVAL trigger value + 1, and the max_delta is full 32-bit.
*/
clockevents_config_and_register(&pit->ced, rate, 2, 0xffffffff);
return 0;
}
static int __init pit_timer_init(struct device_node *np)
{
struct pit_timer *pit;
struct clk *pit_clk;
void __iomem *timer_base;
unsigned long clk_rate;
int irq, ret;
pit = kzalloc(sizeof(*pit), GFP_KERNEL);
if (!pit)
return -ENOMEM;
ret = -ENXIO;
timer_base = of_iomap(np, 0);
if (!timer_base) {
pr_err("Failed to iomap\n");
goto out_kfree;
}
ret = -EINVAL;
irq = irq_of_parse_and_map(np, 0);
if (irq <= 0) {
pr_err("Failed to irq_of_parse_and_map\n");
goto out_iounmap;
}
pit_clk = of_clk_get(np, 0);
if (IS_ERR(pit_clk)) {
ret = PTR_ERR(pit_clk);
goto out_iounmap;
}
ret = clk_prepare_enable(pit_clk);
if (ret)
goto out_clk_put;
clk_rate = clk_get_rate(pit_clk);
/* enable the pit module */
writel(~PITMCR_MDIS, timer_base + PITMCR);
ret = pit_clocksource_init(pit, timer_base, clk_rate);
if (ret)
goto out_disable_unprepare;
ret = pit_clockevent_init(pit, timer_base, clk_rate, irq, 0);
if (ret)
goto out_pit_clocksource_unregister;
return 0;
out_pit_clocksource_unregister:
clocksource_unregister(&pit->cs);
out_disable_unprepare:
clk_disable_unprepare(pit_clk);
out_clk_put:
clk_put(pit_clk);
out_iounmap:
iounmap(timer_base);
out_kfree:
kfree(pit);
return ret;
}
TIMER_OF_DECLARE(vf610, "fsl,vf610-pit", pit_timer_init);
|