1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
* Copyright (C) 2006 Andrey Volkov, Varma Electronics
* Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
* Copyright (C) 2021-2025 Vincent Mailhol <mailhol@kernel.org>
*/
#include <linux/units.h>
#include <linux/can/dev.h>
#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
/* CiA recommended sample points for Non Return to Zero encoding. */
static int can_calc_sample_point_nrz(const struct can_bittiming *bt)
{
if (bt->bitrate > 800 * KILO /* BPS */)
return 750;
if (bt->bitrate > 500 * KILO /* BPS */)
return 800;
return 875;
}
/* Sample points for Pulse-Width Modulation encoding. */
static int can_calc_sample_point_pwm(const struct can_bittiming *bt)
{
if (bt->bitrate > 15 * MEGA /* BPS */)
return 625;
if (bt->bitrate > 9 * MEGA /* BPS */)
return 600;
if (bt->bitrate > 4 * MEGA /* BPS */)
return 560;
return 520;
}
/* Bit-timing calculation derived from:
*
* Code based on LinCAN sources and H8S2638 project
* Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
* Copyright 2005 Stanislav Marek
* email: pisa@cmp.felk.cvut.cz
*
* Calculates proper bit-timing parameters for a specified bit-rate
* and sample-point, which can then be used to set the bit-timing
* registers of the CAN controller. You can find more information
* in the header file linux/can/netlink.h.
*/
static int
can_update_sample_point(const struct can_bittiming_const *btc,
const unsigned int sample_point_reference, const unsigned int tseg,
unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
unsigned int *sample_point_error_ptr)
{
unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
unsigned int sample_point, best_sample_point = 0;
unsigned int tseg1, tseg2;
int i;
for (i = 0; i <= 1; i++) {
tseg2 = tseg + CAN_SYNC_SEG -
(sample_point_reference * (tseg + CAN_SYNC_SEG)) /
1000 - i;
tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
tseg1 = tseg - tseg2;
if (tseg1 > btc->tseg1_max) {
tseg1 = btc->tseg1_max;
tseg2 = tseg - tseg1;
}
sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
(tseg + CAN_SYNC_SEG);
sample_point_error = abs(sample_point_reference - sample_point);
if (sample_point <= sample_point_reference &&
sample_point_error < best_sample_point_error) {
best_sample_point = sample_point;
best_sample_point_error = sample_point_error;
*tseg1_ptr = tseg1;
*tseg2_ptr = tseg2;
}
}
if (sample_point_error_ptr)
*sample_point_error_ptr = best_sample_point_error;
return best_sample_point;
}
int can_calc_bittiming(const struct net_device *dev, struct can_bittiming *bt,
const struct can_bittiming_const *btc, struct netlink_ext_ack *extack)
{
struct can_priv *priv = netdev_priv(dev);
unsigned int bitrate; /* current bitrate */
unsigned int bitrate_error; /* diff between calculated and reference value */
unsigned int best_bitrate_error = UINT_MAX;
unsigned int sample_point_error; /* diff between calculated and reference value */
unsigned int best_sample_point_error = UINT_MAX;
unsigned int sample_point_reference; /* reference sample point */
unsigned int best_tseg = 0; /* current best value for tseg */
unsigned int best_brp = 0; /* current best value for brp */
unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
u64 v64;
int err;
if (bt->sample_point)
sample_point_reference = bt->sample_point;
else if (btc == priv->xl.data_bittiming_const &&
(priv->ctrlmode & CAN_CTRLMODE_XL_TMS))
sample_point_reference = can_calc_sample_point_pwm(bt);
else
sample_point_reference = can_calc_sample_point_nrz(bt);
/* tseg even = round down, odd = round up */
for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
tsegall = CAN_SYNC_SEG + tseg / 2;
/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
/* choose brp step which is possible in system */
brp = (brp / btc->brp_inc) * btc->brp_inc;
if (brp < btc->brp_min || brp > btc->brp_max)
continue;
bitrate = priv->clock.freq / (brp * tsegall);
bitrate_error = abs(bt->bitrate - bitrate);
/* tseg brp biterror */
if (bitrate_error > best_bitrate_error)
continue;
/* reset sample point error if we have a better bitrate */
if (bitrate_error < best_bitrate_error)
best_sample_point_error = UINT_MAX;
can_update_sample_point(btc, sample_point_reference, tseg / 2,
&tseg1, &tseg2, &sample_point_error);
if (sample_point_error >= best_sample_point_error)
continue;
best_sample_point_error = sample_point_error;
best_bitrate_error = bitrate_error;
best_tseg = tseg / 2;
best_brp = brp;
if (bitrate_error == 0 && sample_point_error == 0)
break;
}
if (best_bitrate_error) {
/* Error in one-hundredth of a percent */
v64 = (u64)best_bitrate_error * 10000;
do_div(v64, bt->bitrate);
bitrate_error = (u32)v64;
/* print at least 0.01% if the error is smaller */
bitrate_error = max(bitrate_error, 1U);
if (bitrate_error > CAN_CALC_MAX_ERROR) {
NL_SET_ERR_MSG_FMT(extack,
"bitrate error: %u.%02u%% too high",
bitrate_error / 100,
bitrate_error % 100);
return -EINVAL;
}
NL_SET_ERR_MSG_FMT(extack,
"bitrate error: %u.%02u%%",
bitrate_error / 100, bitrate_error % 100);
}
/* real sample point */
bt->sample_point = can_update_sample_point(btc, sample_point_reference,
best_tseg, &tseg1, &tseg2,
NULL);
v64 = (u64)best_brp * 1000 * 1000 * 1000;
do_div(v64, priv->clock.freq);
bt->tq = (u32)v64;
bt->prop_seg = tseg1 / 2;
bt->phase_seg1 = tseg1 - bt->prop_seg;
bt->phase_seg2 = tseg2;
can_sjw_set_default(bt);
err = can_sjw_check(dev, bt, btc, extack);
if (err)
return err;
bt->brp = best_brp;
/* real bitrate */
bt->bitrate = priv->clock.freq /
(bt->brp * can_bit_time(bt));
return 0;
}
void can_calc_tdco(struct can_tdc *tdc, const struct can_tdc_const *tdc_const,
const struct can_bittiming *dbt,
u32 tdc_mask, u32 *ctrlmode, u32 ctrlmode_supported)
{
u32 tdc_auto = tdc_mask & CAN_CTRLMODE_TDC_AUTO_MASK;
if (!tdc_const || !(ctrlmode_supported & tdc_auto))
return;
*ctrlmode &= ~tdc_mask;
/* As specified in ISO 11898-1 section 11.3.3 "Transmitter
* delay compensation" (TDC) is only applicable if data BRP is
* one or two.
*/
if (dbt->brp == 1 || dbt->brp == 2) {
/* Sample point in clock periods */
u32 sample_point_in_tc = (CAN_SYNC_SEG + dbt->prop_seg +
dbt->phase_seg1) * dbt->brp;
if (sample_point_in_tc < tdc_const->tdco_min)
return;
tdc->tdco = min(sample_point_in_tc, tdc_const->tdco_max);
*ctrlmode |= tdc_auto;
}
}
int can_calc_pwm(struct net_device *dev, struct netlink_ext_ack *extack)
{
struct can_priv *priv = netdev_priv(dev);
const struct can_pwm_const *pwm_const = priv->xl.pwm_const;
struct can_pwm *pwm = &priv->xl.pwm;
u32 xl_tqmin = can_bit_time_tqmin(&priv->xl.data_bittiming);
u32 xl_ns = can_tqmin_to_ns(xl_tqmin, priv->clock.freq);
u32 nom_tqmin = can_bit_time_tqmin(&priv->bittiming);
int pwm_per_bit_max = xl_tqmin / (pwm_const->pwms_min + pwm_const->pwml_min);
int pwm_per_bit;
u32 pwm_tqmin;
/* For 5 MB/s databitrate or greater, xl_ns < CAN_PWM_NS_MAX
* giving us a pwm_per_bit of 1 and the loop immediately breaks
*/
for (pwm_per_bit = DIV_ROUND_UP(xl_ns, CAN_PWM_NS_MAX);
pwm_per_bit <= pwm_per_bit_max; pwm_per_bit++)
if (xl_tqmin % pwm_per_bit == 0)
break;
if (pwm_per_bit > pwm_per_bit_max) {
NL_SET_ERR_MSG_FMT(extack,
"Can not divide the XL data phase's bit time: %u tqmin into multiple PWM symbols",
xl_tqmin);
return -EINVAL;
}
pwm_tqmin = xl_tqmin / pwm_per_bit;
pwm->pwms = DIV_ROUND_UP_POW2(pwm_tqmin, 4);
pwm->pwml = pwm_tqmin - pwm->pwms;
pwm->pwmo = nom_tqmin % pwm_tqmin;
return 0;
}
|