1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2021-2024 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_alloc.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_rtrefcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_trace.h"
#include "xfs_cksum.h"
#include "xfs_error.h"
#include "xfs_extent_busy.h"
#include "xfs_rtgroup.h"
#include "xfs_rtbitmap.h"
static struct kmem_cache *xfs_rtrefcountbt_cur_cache;
/*
* Realtime Reference Count btree.
*
* This is a btree used to track the owner(s) of a given extent in the realtime
* device. See the comments in xfs_refcount_btree.c for more information.
*
* This tree is basically the same as the regular refcount btree except that
* it's rooted in an inode.
*/
static struct xfs_btree_cur *
xfs_rtrefcountbt_dup_cursor(
struct xfs_btree_cur *cur)
{
return xfs_rtrefcountbt_init_cursor(cur->bc_tp, to_rtg(cur->bc_group));
}
STATIC int
xfs_rtrefcountbt_get_minrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level == cur->bc_nlevels - 1) {
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
return xfs_rtrefcountbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes,
level == 0) / 2;
}
return cur->bc_mp->m_rtrefc_mnr[level != 0];
}
STATIC int
xfs_rtrefcountbt_get_maxrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level == cur->bc_nlevels - 1) {
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
return xfs_rtrefcountbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes,
level == 0);
}
return cur->bc_mp->m_rtrefc_mxr[level != 0];
}
STATIC void
xfs_rtrefcountbt_init_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
key->refc.rc_startblock = rec->refc.rc_startblock;
}
STATIC void
xfs_rtrefcountbt_init_high_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
__u32 x;
x = be32_to_cpu(rec->refc.rc_startblock);
x += be32_to_cpu(rec->refc.rc_blockcount) - 1;
key->refc.rc_startblock = cpu_to_be32(x);
}
STATIC void
xfs_rtrefcountbt_init_rec_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_rec *rec)
{
const struct xfs_refcount_irec *irec = &cur->bc_rec.rc;
uint32_t start;
start = xfs_refcount_encode_startblock(irec->rc_startblock,
irec->rc_domain);
rec->refc.rc_startblock = cpu_to_be32(start);
rec->refc.rc_blockcount = cpu_to_be32(cur->bc_rec.rc.rc_blockcount);
rec->refc.rc_refcount = cpu_to_be32(cur->bc_rec.rc.rc_refcount);
}
STATIC void
xfs_rtrefcountbt_init_ptr_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
ptr->l = 0;
}
STATIC int64_t
xfs_rtrefcountbt_key_diff(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key)
{
const struct xfs_refcount_key *kp = &key->refc;
const struct xfs_refcount_irec *irec = &cur->bc_rec.rc;
uint32_t start;
start = xfs_refcount_encode_startblock(irec->rc_startblock,
irec->rc_domain);
return (int64_t)be32_to_cpu(kp->rc_startblock) - start;
}
STATIC int64_t
xfs_rtrefcountbt_diff_two_keys(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2,
const union xfs_btree_key *mask)
{
ASSERT(!mask || mask->refc.rc_startblock);
return (int64_t)be32_to_cpu(k1->refc.rc_startblock) -
be32_to_cpu(k2->refc.rc_startblock);
}
static xfs_failaddr_t
xfs_rtrefcountbt_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
xfs_failaddr_t fa;
int level;
if (!xfs_verify_magic(bp, block->bb_magic))
return __this_address;
if (!xfs_has_reflink(mp))
return __this_address;
fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
if (fa)
return fa;
level = be16_to_cpu(block->bb_level);
if (level > mp->m_rtrefc_maxlevels)
return __this_address;
return xfs_btree_fsblock_verify(bp, mp->m_rtrefc_mxr[level != 0]);
}
static void
xfs_rtrefcountbt_read_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
if (!xfs_btree_fsblock_verify_crc(bp))
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
else {
fa = xfs_rtrefcountbt_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
if (bp->b_error)
trace_xfs_btree_corrupt(bp, _RET_IP_);
}
static void
xfs_rtrefcountbt_write_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
fa = xfs_rtrefcountbt_verify(bp);
if (fa) {
trace_xfs_btree_corrupt(bp, _RET_IP_);
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
return;
}
xfs_btree_fsblock_calc_crc(bp);
}
const struct xfs_buf_ops xfs_rtrefcountbt_buf_ops = {
.name = "xfs_rtrefcountbt",
.magic = { 0, cpu_to_be32(XFS_RTREFC_CRC_MAGIC) },
.verify_read = xfs_rtrefcountbt_read_verify,
.verify_write = xfs_rtrefcountbt_write_verify,
.verify_struct = xfs_rtrefcountbt_verify,
};
STATIC int
xfs_rtrefcountbt_keys_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2)
{
return be32_to_cpu(k1->refc.rc_startblock) <
be32_to_cpu(k2->refc.rc_startblock);
}
STATIC int
xfs_rtrefcountbt_recs_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_rec *r1,
const union xfs_btree_rec *r2)
{
return be32_to_cpu(r1->refc.rc_startblock) +
be32_to_cpu(r1->refc.rc_blockcount) <=
be32_to_cpu(r2->refc.rc_startblock);
}
STATIC enum xbtree_key_contig
xfs_rtrefcountbt_keys_contiguous(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key1,
const union xfs_btree_key *key2,
const union xfs_btree_key *mask)
{
ASSERT(!mask || mask->refc.rc_startblock);
return xbtree_key_contig(be32_to_cpu(key1->refc.rc_startblock),
be32_to_cpu(key2->refc.rc_startblock));
}
const struct xfs_btree_ops xfs_rtrefcountbt_ops = {
.name = "rtrefcount",
.type = XFS_BTREE_TYPE_INODE,
.geom_flags = XFS_BTGEO_IROOT_RECORDS,
.rec_len = sizeof(struct xfs_refcount_rec),
.key_len = sizeof(struct xfs_refcount_key),
.ptr_len = XFS_BTREE_LONG_PTR_LEN,
.lru_refs = XFS_REFC_BTREE_REF,
.statoff = XFS_STATS_CALC_INDEX(xs_rtrefcbt_2),
.dup_cursor = xfs_rtrefcountbt_dup_cursor,
.alloc_block = xfs_btree_alloc_metafile_block,
.free_block = xfs_btree_free_metafile_block,
.get_minrecs = xfs_rtrefcountbt_get_minrecs,
.get_maxrecs = xfs_rtrefcountbt_get_maxrecs,
.init_key_from_rec = xfs_rtrefcountbt_init_key_from_rec,
.init_high_key_from_rec = xfs_rtrefcountbt_init_high_key_from_rec,
.init_rec_from_cur = xfs_rtrefcountbt_init_rec_from_cur,
.init_ptr_from_cur = xfs_rtrefcountbt_init_ptr_from_cur,
.key_diff = xfs_rtrefcountbt_key_diff,
.buf_ops = &xfs_rtrefcountbt_buf_ops,
.diff_two_keys = xfs_rtrefcountbt_diff_two_keys,
.keys_inorder = xfs_rtrefcountbt_keys_inorder,
.recs_inorder = xfs_rtrefcountbt_recs_inorder,
.keys_contiguous = xfs_rtrefcountbt_keys_contiguous,
};
/* Allocate a new rt refcount btree cursor. */
struct xfs_btree_cur *
xfs_rtrefcountbt_init_cursor(
struct xfs_trans *tp,
struct xfs_rtgroup *rtg)
{
struct xfs_inode *ip = NULL;
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_btree_cur *cur;
return NULL; /* XXX */
xfs_assert_ilocked(ip, XFS_ILOCK_SHARED | XFS_ILOCK_EXCL);
cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rtrefcountbt_ops,
mp->m_rtrefc_maxlevels, xfs_rtrefcountbt_cur_cache);
cur->bc_ino.ip = ip;
cur->bc_refc.nr_ops = 0;
cur->bc_refc.shape_changes = 0;
cur->bc_group = xfs_group_hold(rtg_group(rtg));
cur->bc_nlevels = be16_to_cpu(ip->i_df.if_broot->bb_level) + 1;
cur->bc_ino.forksize = xfs_inode_fork_size(ip, XFS_DATA_FORK);
cur->bc_ino.whichfork = XFS_DATA_FORK;
return cur;
}
/*
* Install a new rt reverse mapping btree root. Caller is responsible for
* invalidating and freeing the old btree blocks.
*/
void
xfs_rtrefcountbt_commit_staged_btree(
struct xfs_btree_cur *cur,
struct xfs_trans *tp)
{
struct xbtree_ifakeroot *ifake = cur->bc_ino.ifake;
struct xfs_ifork *ifp;
int flags = XFS_ILOG_CORE | XFS_ILOG_DBROOT;
ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
/*
* Free any resources hanging off the real fork, then shallow-copy the
* staging fork's contents into the real fork to transfer everything
* we just built.
*/
ifp = xfs_ifork_ptr(cur->bc_ino.ip, XFS_DATA_FORK);
xfs_idestroy_fork(ifp);
memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork));
cur->bc_ino.ip->i_projid = cur->bc_group->xg_gno;
xfs_trans_log_inode(tp, cur->bc_ino.ip, flags);
xfs_btree_commit_ifakeroot(cur, tp, XFS_DATA_FORK);
}
/* Calculate number of records in a realtime refcount btree block. */
static inline unsigned int
xfs_rtrefcountbt_block_maxrecs(
unsigned int blocklen,
bool leaf)
{
if (leaf)
return blocklen / sizeof(struct xfs_refcount_rec);
return blocklen / (sizeof(struct xfs_refcount_key) +
sizeof(xfs_rtrefcount_ptr_t));
}
/*
* Calculate number of records in an refcount btree block.
*/
unsigned int
xfs_rtrefcountbt_maxrecs(
struct xfs_mount *mp,
unsigned int blocklen,
bool leaf)
{
blocklen -= XFS_RTREFCOUNT_BLOCK_LEN;
return xfs_rtrefcountbt_block_maxrecs(blocklen, leaf);
}
/* Compute the max possible height for realtime refcount btrees. */
unsigned int
xfs_rtrefcountbt_maxlevels_ondisk(void)
{
unsigned int minrecs[2];
unsigned int blocklen;
blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
minrecs[0] = xfs_rtrefcountbt_block_maxrecs(blocklen, true) / 2;
minrecs[1] = xfs_rtrefcountbt_block_maxrecs(blocklen, false) / 2;
/* We need at most one record for every block in an rt group. */
return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_RGBLOCKS);
}
int __init
xfs_rtrefcountbt_init_cur_cache(void)
{
xfs_rtrefcountbt_cur_cache = kmem_cache_create("xfs_rtrefcountbt_cur",
xfs_btree_cur_sizeof(
xfs_rtrefcountbt_maxlevels_ondisk()),
0, 0, NULL);
if (!xfs_rtrefcountbt_cur_cache)
return -ENOMEM;
return 0;
}
void
xfs_rtrefcountbt_destroy_cur_cache(void)
{
kmem_cache_destroy(xfs_rtrefcountbt_cur_cache);
xfs_rtrefcountbt_cur_cache = NULL;
}
/* Compute the maximum height of a realtime refcount btree. */
void
xfs_rtrefcountbt_compute_maxlevels(
struct xfs_mount *mp)
{
unsigned int d_maxlevels, r_maxlevels;
if (!xfs_has_rtreflink(mp)) {
mp->m_rtrefc_maxlevels = 0;
return;
}
/*
* The realtime refcountbt lives on the data device, which means that
* its maximum height is constrained by the size of the data device and
* the height required to store one refcount record for each rtextent
* in an rt group.
*/
d_maxlevels = xfs_btree_space_to_height(mp->m_rtrefc_mnr,
mp->m_sb.sb_dblocks);
r_maxlevels = xfs_btree_compute_maxlevels(mp->m_rtrefc_mnr,
mp->m_sb.sb_rgextents);
/* Add one level to handle the inode root level. */
mp->m_rtrefc_maxlevels = min(d_maxlevels, r_maxlevels) + 1;
}
|