summaryrefslogtreecommitdiff
path: root/kernel/rseq.c
blob: 395d8b002350a366f500909c07aaf4c08e558629 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
// SPDX-License-Identifier: GPL-2.0+
/*
 * Restartable sequences system call
 *
 * Copyright (C) 2015, Google, Inc.,
 * Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com>
 * Copyright (C) 2015-2018, EfficiOS Inc.,
 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
 */

/*
 * Restartable sequences are a lightweight interface that allows
 * user-level code to be executed atomically relative to scheduler
 * preemption and signal delivery. Typically used for implementing
 * per-cpu operations.
 *
 * It allows user-space to perform update operations on per-cpu data
 * without requiring heavy-weight atomic operations.
 *
 * Detailed algorithm of rseq user-space assembly sequences:
 *
 *                     init(rseq_cs)
 *                     cpu = TLS->rseq::cpu_id_start
 *   [1]               TLS->rseq::rseq_cs = rseq_cs
 *   [start_ip]        ----------------------------
 *   [2]               if (cpu != TLS->rseq::cpu_id)
 *                             goto abort_ip;
 *   [3]               <last_instruction_in_cs>
 *   [post_commit_ip]  ----------------------------
 *
 *   The address of jump target abort_ip must be outside the critical
 *   region, i.e.:
 *
 *     [abort_ip] < [start_ip]  || [abort_ip] >= [post_commit_ip]
 *
 *   Steps [2]-[3] (inclusive) need to be a sequence of instructions in
 *   userspace that can handle being interrupted between any of those
 *   instructions, and then resumed to the abort_ip.
 *
 *   1.  Userspace stores the address of the struct rseq_cs assembly
 *       block descriptor into the rseq_cs field of the registered
 *       struct rseq TLS area. This update is performed through a single
 *       store within the inline assembly instruction sequence.
 *       [start_ip]
 *
 *   2.  Userspace tests to check whether the current cpu_id field match
 *       the cpu number loaded before start_ip, branching to abort_ip
 *       in case of a mismatch.
 *
 *       If the sequence is preempted or interrupted by a signal
 *       at or after start_ip and before post_commit_ip, then the kernel
 *       clears TLS->__rseq_abi::rseq_cs, and sets the user-space return
 *       ip to abort_ip before returning to user-space, so the preempted
 *       execution resumes at abort_ip.
 *
 *   3.  Userspace critical section final instruction before
 *       post_commit_ip is the commit. The critical section is
 *       self-terminating.
 *       [post_commit_ip]
 *
 *   4.  <success>
 *
 *   On failure at [2], or if interrupted by preempt or signal delivery
 *   between [1] and [3]:
 *
 *       [abort_ip]
 *   F1. <failure>
 */

/* Required to select the proper per_cpu ops for rseq_stats_inc() */
#define RSEQ_BUILD_SLOW_PATH

#include <linux/debugfs.h>
#include <linux/ratelimit.h>
#include <linux/rseq_entry.h>
#include <linux/sched.h>
#include <linux/syscalls.h>
#include <linux/uaccess.h>
#include <linux/types.h>
#include <asm/ptrace.h>

#define CREATE_TRACE_POINTS
#include <trace/events/rseq.h>

DEFINE_STATIC_KEY_MAYBE(CONFIG_RSEQ_DEBUG_DEFAULT_ENABLE, rseq_debug_enabled);

static inline void rseq_control_debug(bool on)
{
	if (on)
		static_branch_enable(&rseq_debug_enabled);
	else
		static_branch_disable(&rseq_debug_enabled);
}

static int __init rseq_setup_debug(char *str)
{
	bool on;

	if (kstrtobool(str, &on))
		return -EINVAL;
	rseq_control_debug(on);
	return 1;
}
__setup("rseq_debug=", rseq_setup_debug);

#ifdef CONFIG_TRACEPOINTS
/*
 * Out of line, so the actual update functions can be in a header to be
 * inlined into the exit to user code.
 */
void __rseq_trace_update(struct task_struct *t)
{
	trace_rseq_update(t);
}

void __rseq_trace_ip_fixup(unsigned long ip, unsigned long start_ip,
			   unsigned long offset, unsigned long abort_ip)
{
	trace_rseq_ip_fixup(ip, start_ip, offset, abort_ip);
}
#endif /* CONFIG_TRACEPOINTS */

#ifdef CONFIG_DEBUG_FS
#ifdef CONFIG_RSEQ_STATS
DEFINE_PER_CPU(struct rseq_stats, rseq_stats);

static int rseq_stats_show(struct seq_file *m, void *p)
{
	struct rseq_stats stats = { };
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		stats.exit	+= data_race(per_cpu(rseq_stats.exit, cpu));
		stats.signal	+= data_race(per_cpu(rseq_stats.signal, cpu));
		stats.slowpath	+= data_race(per_cpu(rseq_stats.slowpath, cpu));
		stats.fastpath	+= data_race(per_cpu(rseq_stats.fastpath, cpu));
		stats.ids	+= data_race(per_cpu(rseq_stats.ids, cpu));
		stats.cs	+= data_race(per_cpu(rseq_stats.cs, cpu));
		stats.clear	+= data_race(per_cpu(rseq_stats.clear, cpu));
		stats.fixup	+= data_race(per_cpu(rseq_stats.fixup, cpu));
	}

	seq_printf(m, "exit:   %16lu\n", stats.exit);
	seq_printf(m, "signal: %16lu\n", stats.signal);
	seq_printf(m, "slowp:  %16lu\n", stats.slowpath);
	seq_printf(m, "fastp:  %16lu\n", stats.fastpath);
	seq_printf(m, "ids:    %16lu\n", stats.ids);
	seq_printf(m, "cs:     %16lu\n", stats.cs);
	seq_printf(m, "clear:  %16lu\n", stats.clear);
	seq_printf(m, "fixup:  %16lu\n", stats.fixup);
	return 0;
}

static int rseq_stats_open(struct inode *inode, struct file *file)
{
	return single_open(file, rseq_stats_show, inode->i_private);
}

static const struct file_operations stat_ops = {
	.open		= rseq_stats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static int __init rseq_stats_init(struct dentry *root_dir)
{
	debugfs_create_file("stats", 0444, root_dir, NULL, &stat_ops);
	return 0;
}
#else
static inline void rseq_stats_init(struct dentry *root_dir) { }
#endif /* CONFIG_RSEQ_STATS */

static int rseq_debug_show(struct seq_file *m, void *p)
{
	bool on = static_branch_unlikely(&rseq_debug_enabled);

	seq_printf(m, "%d\n", on);
	return 0;
}

static ssize_t rseq_debug_write(struct file *file, const char __user *ubuf,
			    size_t count, loff_t *ppos)
{
	bool on;

	if (kstrtobool_from_user(ubuf, count, &on))
		return -EINVAL;

	rseq_control_debug(on);
	return count;
}

static int rseq_debug_open(struct inode *inode, struct file *file)
{
	return single_open(file, rseq_debug_show, inode->i_private);
}

static const struct file_operations debug_ops = {
	.open		= rseq_debug_open,
	.read		= seq_read,
	.write		= rseq_debug_write,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static int __init rseq_debugfs_init(void)
{
	struct dentry *root_dir = debugfs_create_dir("rseq", NULL);

	debugfs_create_file("debug", 0644, root_dir, NULL, &debug_ops);
	rseq_stats_init(root_dir);
	return 0;
}
__initcall(rseq_debugfs_init);
#endif /* CONFIG_DEBUG_FS */

static bool rseq_set_ids(struct task_struct *t, struct rseq_ids *ids, u32 node_id)
{
	return rseq_set_ids_get_csaddr(t, ids, node_id, NULL);
}

static bool rseq_handle_cs(struct task_struct *t, struct pt_regs *regs)
{
	struct rseq __user *urseq = t->rseq.usrptr;
	u64 csaddr;

	scoped_user_read_access(urseq, efault)
		unsafe_get_user(csaddr, &urseq->rseq_cs, efault);
	if (likely(!csaddr))
		return true;
	return rseq_update_user_cs(t, regs, csaddr);
efault:
	return false;
}

static void rseq_slowpath_update_usr(struct pt_regs *regs)
{
	/*
	 * Preserve rseq state and user_irq state. The generic entry code
	 * clears user_irq on the way out, the non-generic entry
	 * architectures are not having user_irq.
	 */
	const struct rseq_event evt_mask = { .has_rseq = true, .user_irq = true, };
	struct task_struct *t = current;
	struct rseq_ids ids;
	u32 node_id;
	bool event;

	if (unlikely(t->flags & PF_EXITING))
		return;

	rseq_stat_inc(rseq_stats.slowpath);

	/*
	 * Read and clear the event pending bit first. If the task
	 * was not preempted or migrated or a signal is on the way,
	 * there is no point in doing any of the heavy lifting here
	 * on production kernels. In that case TIF_NOTIFY_RESUME
	 * was raised by some other functionality.
	 *
	 * This is correct because the read/clear operation is
	 * guarded against scheduler preemption, which makes it CPU
	 * local atomic. If the task is preempted right after
	 * re-enabling preemption then TIF_NOTIFY_RESUME is set
	 * again and this function is invoked another time _before_
	 * the task is able to return to user mode.
	 *
	 * On a debug kernel, invoke the fixup code unconditionally
	 * with the result handed in to allow the detection of
	 * inconsistencies.
	 */
	scoped_guard(irq) {
		event = t->rseq.event.sched_switch;
		t->rseq.event.all &= evt_mask.all;
		ids.cpu_id = task_cpu(t);
		ids.mm_cid = task_mm_cid(t);
	}

	if (!event)
		return;

	node_id = cpu_to_node(ids.cpu_id);

	if (unlikely(!rseq_update_usr(t, regs, &ids, node_id))) {
		/*
		 * Clear the errors just in case this might survive magically, but
		 * leave the rest intact.
		 */
		t->rseq.event.error = 0;
		force_sig(SIGSEGV);
	}
}

void __rseq_handle_slowpath(struct pt_regs *regs)
{
	/*
	 * If invoked from hypervisors before entering the guest via
	 * resume_user_mode_work(), then @regs is a NULL pointer.
	 *
	 * resume_user_mode_work() clears TIF_NOTIFY_RESUME and re-raises
	 * it before returning from the ioctl() to user space when
	 * rseq_event.sched_switch is set.
	 *
	 * So it's safe to ignore here instead of pointlessly updating it
	 * in the vcpu_run() loop.
	 */
	if (!regs)
		return;

	rseq_slowpath_update_usr(regs);
}

void __rseq_signal_deliver(int sig, struct pt_regs *regs)
{
	rseq_stat_inc(rseq_stats.signal);
	/*
	 * Don't update IDs, they are handled on exit to user if
	 * necessary. The important thing is to abort a critical section of
	 * the interrupted context as after this point the instruction
	 * pointer in @regs points to the signal handler.
	 */
	if (unlikely(!rseq_handle_cs(current, regs))) {
		/*
		 * Clear the errors just in case this might survive
		 * magically, but leave the rest intact.
		 */
		current->rseq.event.error = 0;
		force_sigsegv(sig);
	}
}

/*
 * Terminate the process if a syscall is issued within a restartable
 * sequence.
 */
void __rseq_debug_syscall_return(struct pt_regs *regs)
{
	struct task_struct *t = current;
	u64 csaddr;

	if (!t->rseq.event.has_rseq)
		return;
	if (get_user(csaddr, &t->rseq.usrptr->rseq_cs))
		goto fail;
	if (likely(!csaddr))
		return;
	if (unlikely(csaddr >= TASK_SIZE))
		goto fail;
	if (rseq_debug_update_user_cs(t, regs, csaddr))
		return;
fail:
	force_sig(SIGSEGV);
}

#ifdef CONFIG_DEBUG_RSEQ
/* Kept around to keep GENERIC_ENTRY=n architectures supported. */
void rseq_syscall(struct pt_regs *regs)
{
	__rseq_debug_syscall_return(regs);
}
#endif

static bool rseq_reset_ids(void)
{
	struct rseq_ids ids = {
		.cpu_id		= RSEQ_CPU_ID_UNINITIALIZED,
		.mm_cid		= 0,
	};

	/*
	 * If this fails, terminate it because this leaves the kernel in
	 * stupid state as exit to user space will try to fixup the ids
	 * again.
	 */
	if (rseq_set_ids(current, &ids, 0))
		return true;

	force_sig(SIGSEGV);
	return false;
}

/* The original rseq structure size (including padding) is 32 bytes. */
#define ORIG_RSEQ_SIZE		32

/*
 * sys_rseq - setup restartable sequences for caller thread.
 */
SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len, int, flags, u32, sig)
{
	if (flags & RSEQ_FLAG_UNREGISTER) {
		if (flags & ~RSEQ_FLAG_UNREGISTER)
			return -EINVAL;
		/* Unregister rseq for current thread. */
		if (current->rseq.usrptr != rseq || !current->rseq.usrptr)
			return -EINVAL;
		if (rseq_len != current->rseq.len)
			return -EINVAL;
		if (current->rseq.sig != sig)
			return -EPERM;
		if (!rseq_reset_ids())
			return -EFAULT;
		rseq_reset(current);
		return 0;
	}

	if (unlikely(flags))
		return -EINVAL;

	if (current->rseq.usrptr) {
		/*
		 * If rseq is already registered, check whether
		 * the provided address differs from the prior
		 * one.
		 */
		if (current->rseq.usrptr != rseq || rseq_len != current->rseq.len)
			return -EINVAL;
		if (current->rseq.sig != sig)
			return -EPERM;
		/* Already registered. */
		return -EBUSY;
	}

	/*
	 * If there was no rseq previously registered, ensure the provided rseq
	 * is properly aligned, as communcated to user-space through the ELF
	 * auxiliary vector AT_RSEQ_ALIGN. If rseq_len is the original rseq
	 * size, the required alignment is the original struct rseq alignment.
	 *
	 * In order to be valid, rseq_len is either the original rseq size, or
	 * large enough to contain all supported fields, as communicated to
	 * user-space through the ELF auxiliary vector AT_RSEQ_FEATURE_SIZE.
	 */
	if (rseq_len < ORIG_RSEQ_SIZE ||
	    (rseq_len == ORIG_RSEQ_SIZE && !IS_ALIGNED((unsigned long)rseq, ORIG_RSEQ_SIZE)) ||
	    (rseq_len != ORIG_RSEQ_SIZE && (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) ||
					    rseq_len < offsetof(struct rseq, end))))
		return -EINVAL;
	if (!access_ok(rseq, rseq_len))
		return -EFAULT;

	scoped_user_write_access(rseq, efault) {
		/*
		 * If the rseq_cs pointer is non-NULL on registration, clear it to
		 * avoid a potential segfault on return to user-space. The proper thing
		 * to do would have been to fail the registration but this would break
		 * older libcs that reuse the rseq area for new threads without
		 * clearing the fields. Don't bother reading it, just reset it.
		 */
		unsafe_put_user(0UL, &rseq->rseq_cs, efault);
		/* Initialize IDs in user space */
		unsafe_put_user(RSEQ_CPU_ID_UNINITIALIZED, &rseq->cpu_id_start, efault);
		unsafe_put_user(RSEQ_CPU_ID_UNINITIALIZED, &rseq->cpu_id, efault);
		unsafe_put_user(0U, &rseq->node_id, efault);
		unsafe_put_user(0U, &rseq->mm_cid, efault);
	}

	/*
	 * Activate the registration by setting the rseq area address, length
	 * and signature in the task struct.
	 */
	current->rseq.usrptr = rseq;
	current->rseq.len = rseq_len;
	current->rseq.sig = sig;

	/*
	 * If rseq was previously inactive, and has just been
	 * registered, ensure the cpu_id_start and cpu_id fields
	 * are updated before returning to user-space.
	 */
	current->rseq.event.has_rseq = true;
	rseq_force_update();
	return 0;

efault:
	return -EFAULT;
}