summaryrefslogtreecommitdiff
path: root/kernel/sched/ext_idle.c
blob: 0912f94b95cdcc7aa5ca15a89fbc9365fd92f1d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
// SPDX-License-Identifier: GPL-2.0
/*
 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
 *
 * Built-in idle CPU tracking policy.
 *
 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
 * Copyright (c) 2024 Andrea Righi <arighi@nvidia.com>
 */
#include "ext_idle.h"

/* Enable/disable built-in idle CPU selection policy */
static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);

/* Enable/disable per-node idle cpumasks */
static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_per_node);

#ifdef CONFIG_SMP
#ifdef CONFIG_CPUMASK_OFFSTACK
#define CL_ALIGNED_IF_ONSTACK
#else
#define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
#endif

/* Enable/disable LLC aware optimizations */
static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);

/* Enable/disable NUMA aware optimizations */
static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);

static struct {
	cpumask_var_t cpu;
	cpumask_var_t smt;
} idle_masks CL_ALIGNED_IF_ONSTACK;

bool scx_idle_test_and_clear_cpu(int cpu)
{
#ifdef CONFIG_SCHED_SMT
	/*
	 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
	 * cluster is not wholly idle either way. This also prevents
	 * scx_pick_idle_cpu() from getting caught in an infinite loop.
	 */
	if (sched_smt_active()) {
		const struct cpumask *smt = cpu_smt_mask(cpu);

		/*
		 * If offline, @cpu is not its own sibling and
		 * scx_pick_idle_cpu() can get caught in an infinite loop as
		 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
		 * is eventually cleared.
		 *
		 * NOTE: Use cpumask_intersects() and cpumask_test_cpu() to
		 * reduce memory writes, which may help alleviate cache
		 * coherence pressure.
		 */
		if (cpumask_intersects(smt, idle_masks.smt))
			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
		else if (cpumask_test_cpu(cpu, idle_masks.smt))
			__cpumask_clear_cpu(cpu, idle_masks.smt);
	}
#endif
	return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
}

s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
{
	int cpu;

retry:
	if (sched_smt_active()) {
		cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
		if (cpu < nr_cpu_ids)
			goto found;

		if (flags & SCX_PICK_IDLE_CORE)
			return -EBUSY;
	}

	cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
	if (cpu >= nr_cpu_ids)
		return -EBUSY;

found:
	if (scx_idle_test_and_clear_cpu(cpu))
		return cpu;
	else
		goto retry;
}

/*
 * Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC
 * domain is not defined).
 */
static unsigned int llc_weight(s32 cpu)
{
	struct sched_domain *sd;

	sd = rcu_dereference(per_cpu(sd_llc, cpu));
	if (!sd)
		return 0;

	return sd->span_weight;
}

/*
 * Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC
 * domain is not defined).
 */
static struct cpumask *llc_span(s32 cpu)
{
	struct sched_domain *sd;

	sd = rcu_dereference(per_cpu(sd_llc, cpu));
	if (!sd)
		return 0;

	return sched_domain_span(sd);
}

/*
 * Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the
 * NUMA domain is not defined).
 */
static unsigned int numa_weight(s32 cpu)
{
	struct sched_domain *sd;
	struct sched_group *sg;

	sd = rcu_dereference(per_cpu(sd_numa, cpu));
	if (!sd)
		return 0;
	sg = sd->groups;
	if (!sg)
		return 0;

	return sg->group_weight;
}

/*
 * Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA
 * domain is not defined).
 */
static struct cpumask *numa_span(s32 cpu)
{
	struct sched_domain *sd;
	struct sched_group *sg;

	sd = rcu_dereference(per_cpu(sd_numa, cpu));
	if (!sd)
		return NULL;
	sg = sd->groups;
	if (!sg)
		return NULL;

	return sched_group_span(sg);
}

/*
 * Return true if the LLC domains do not perfectly overlap with the NUMA
 * domains, false otherwise.
 */
static bool llc_numa_mismatch(void)
{
	int cpu;

	/*
	 * We need to scan all online CPUs to verify whether their scheduling
	 * domains overlap.
	 *
	 * While it is rare to encounter architectures with asymmetric NUMA
	 * topologies, CPU hotplugging or virtualized environments can result
	 * in asymmetric configurations.
	 *
	 * For example:
	 *
	 *  NUMA 0:
	 *    - LLC 0: cpu0..cpu7
	 *    - LLC 1: cpu8..cpu15 [offline]
	 *
	 *  NUMA 1:
	 *    - LLC 0: cpu16..cpu23
	 *    - LLC 1: cpu24..cpu31
	 *
	 * In this case, if we only check the first online CPU (cpu0), we might
	 * incorrectly assume that the LLC and NUMA domains are fully
	 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC
	 * domains).
	 */
	for_each_online_cpu(cpu)
		if (llc_weight(cpu) != numa_weight(cpu))
			return true;

	return false;
}

/*
 * Initialize topology-aware scheduling.
 *
 * Detect if the system has multiple LLC or multiple NUMA domains and enable
 * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
 * selection policy.
 *
 * Assumption: the kernel's internal topology representation assumes that each
 * CPU belongs to a single LLC domain, and that each LLC domain is entirely
 * contained within a single NUMA node.
 */
void scx_idle_update_selcpu_topology(struct sched_ext_ops *ops)
{
	bool enable_llc = false, enable_numa = false;
	unsigned int nr_cpus;
	s32 cpu = cpumask_first(cpu_online_mask);

	/*
	 * Enable LLC domain optimization only when there are multiple LLC
	 * domains among the online CPUs. If all online CPUs are part of a
	 * single LLC domain, the idle CPU selection logic can choose any
	 * online CPU without bias.
	 *
	 * Note that it is sufficient to check the LLC domain of the first
	 * online CPU to determine whether a single LLC domain includes all
	 * CPUs.
	 */
	rcu_read_lock();
	nr_cpus = llc_weight(cpu);
	if (nr_cpus > 0) {
		if (nr_cpus < num_online_cpus())
			enable_llc = true;
		pr_debug("sched_ext: LLC=%*pb weight=%u\n",
			 cpumask_pr_args(llc_span(cpu)), llc_weight(cpu));
	}

	/*
	 * Enable NUMA optimization only when there are multiple NUMA domains
	 * among the online CPUs and the NUMA domains don't perfectly overlaps
	 * with the LLC domains.
	 *
	 * If all CPUs belong to the same NUMA node and the same LLC domain,
	 * enabling both NUMA and LLC optimizations is unnecessary, as checking
	 * for an idle CPU in the same domain twice is redundant.
	 *
	 * If SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled ignore the NUMA
	 * optimization, as we would naturally select idle CPUs within
	 * specific NUMA nodes querying the corresponding per-node cpumask.
	 */
	if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
		nr_cpus = numa_weight(cpu);
		if (nr_cpus > 0) {
			if (nr_cpus < num_online_cpus() && llc_numa_mismatch())
				enable_numa = true;
			pr_debug("sched_ext: NUMA=%*pb weight=%u\n",
				 cpumask_pr_args(numa_span(cpu)), nr_cpus);
		}
	}
	rcu_read_unlock();

	pr_debug("sched_ext: LLC idle selection %s\n",
		 str_enabled_disabled(enable_llc));
	pr_debug("sched_ext: NUMA idle selection %s\n",
		 str_enabled_disabled(enable_numa));

	if (enable_llc)
		static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
	else
		static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
	if (enable_numa)
		static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
	else
		static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
}

/*
 * Built-in CPU idle selection policy:
 *
 * 1. Prioritize full-idle cores:
 *   - always prioritize CPUs from fully idle cores (both logical CPUs are
 *     idle) to avoid interference caused by SMT.
 *
 * 2. Reuse the same CPU:
 *   - prefer the last used CPU to take advantage of cached data (L1, L2) and
 *     branch prediction optimizations.
 *
 * 3. Pick a CPU within the same LLC (Last-Level Cache):
 *   - if the above conditions aren't met, pick a CPU that shares the same LLC
 *     to maintain cache locality.
 *
 * 4. Pick a CPU within the same NUMA node, if enabled:
 *   - choose a CPU from the same NUMA node to reduce memory access latency.
 *
 * 5. Pick any idle CPU usable by the task.
 *
 * Step 3 and 4 are performed only if the system has, respectively, multiple
 * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and
 * scx_selcpu_topo_numa).
 *
 * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
 * we never call ops.select_cpu() for them, see select_task_rq().
 */
s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *found)
{
	const struct cpumask *llc_cpus = NULL;
	const struct cpumask *numa_cpus = NULL;
	s32 cpu;

	*found = false;

	/*
	 * This is necessary to protect llc_cpus.
	 */
	rcu_read_lock();

	/*
	 * Determine the scheduling domain only if the task is allowed to run
	 * on all CPUs.
	 *
	 * This is done primarily for efficiency, as it avoids the overhead of
	 * updating a cpumask every time we need to select an idle CPU (which
	 * can be costly in large SMP systems), but it also aligns logically:
	 * if a task's scheduling domain is restricted by user-space (through
	 * CPU affinity), the task will simply use the flat scheduling domain
	 * defined by user-space.
	 */
	if (p->nr_cpus_allowed >= num_possible_cpus()) {
		if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa))
			numa_cpus = numa_span(prev_cpu);

		if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc))
			llc_cpus = llc_span(prev_cpu);
	}

	/*
	 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
	 */
	if (wake_flags & SCX_WAKE_SYNC) {
		cpu = smp_processor_id();

		/*
		 * If the waker's CPU is cache affine and prev_cpu is idle,
		 * then avoid a migration.
		 */
		if (cpus_share_cache(cpu, prev_cpu) &&
		    scx_idle_test_and_clear_cpu(prev_cpu)) {
			cpu = prev_cpu;
			goto cpu_found;
		}

		/*
		 * If the waker's local DSQ is empty, and the system is under
		 * utilized, try to wake up @p to the local DSQ of the waker.
		 *
		 * Checking only for an empty local DSQ is insufficient as it
		 * could give the wakee an unfair advantage when the system is
		 * oversaturated.
		 *
		 * Checking only for the presence of idle CPUs is also
		 * insufficient as the local DSQ of the waker could have tasks
		 * piled up on it even if there is an idle core elsewhere on
		 * the system.
		 */
		if (!cpumask_empty(idle_masks.cpu) &&
		    !(current->flags & PF_EXITING) &&
		    cpu_rq(cpu)->scx.local_dsq.nr == 0) {
			if (cpumask_test_cpu(cpu, p->cpus_ptr))
				goto cpu_found;
		}
	}

	/*
	 * If CPU has SMT, any wholly idle CPU is likely a better pick than
	 * partially idle @prev_cpu.
	 */
	if (sched_smt_active()) {
		/*
		 * Keep using @prev_cpu if it's part of a fully idle core.
		 */
		if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
		    scx_idle_test_and_clear_cpu(prev_cpu)) {
			cpu = prev_cpu;
			goto cpu_found;
		}

		/*
		 * Search for any fully idle core in the same LLC domain.
		 */
		if (llc_cpus) {
			cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE);
			if (cpu >= 0)
				goto cpu_found;
		}

		/*
		 * Search for any fully idle core in the same NUMA node.
		 */
		if (numa_cpus) {
			cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE);
			if (cpu >= 0)
				goto cpu_found;
		}

		/*
		 * Search for any full idle core usable by the task.
		 */
		cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
		if (cpu >= 0)
			goto cpu_found;
	}

	/*
	 * Use @prev_cpu if it's idle.
	 */
	if (scx_idle_test_and_clear_cpu(prev_cpu)) {
		cpu = prev_cpu;
		goto cpu_found;
	}

	/*
	 * Search for any idle CPU in the same LLC domain.
	 */
	if (llc_cpus) {
		cpu = scx_pick_idle_cpu(llc_cpus, 0);
		if (cpu >= 0)
			goto cpu_found;
	}

	/*
	 * Search for any idle CPU in the same NUMA node.
	 */
	if (numa_cpus) {
		cpu = scx_pick_idle_cpu(numa_cpus, 0);
		if (cpu >= 0)
			goto cpu_found;
	}

	/*
	 * Search for any idle CPU usable by the task.
	 */
	cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
	if (cpu >= 0)
		goto cpu_found;

	rcu_read_unlock();
	return prev_cpu;

cpu_found:
	rcu_read_unlock();

	*found = true;
	return cpu;
}

void scx_idle_init_masks(void)
{
	BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
	BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
}

static void update_builtin_idle(int cpu, bool idle)
{
	assign_cpu(cpu, idle_masks.cpu, idle);

#ifdef CONFIG_SCHED_SMT
	if (sched_smt_active()) {
		const struct cpumask *smt = cpu_smt_mask(cpu);

		if (idle) {
			/*
			 * idle_masks.smt handling is racy but that's fine as
			 * it's only for optimization and self-correcting.
			 */
			if (!cpumask_subset(smt, idle_masks.cpu))
				return;
			cpumask_or(idle_masks.smt, idle_masks.smt, smt);
		} else {
			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
		}
	}
#endif
}

/*
 * Update the idle state of a CPU to @idle.
 *
 * If @do_notify is true, ops.update_idle() is invoked to notify the scx
 * scheduler of an actual idle state transition (idle to busy or vice
 * versa). If @do_notify is false, only the idle state in the idle masks is
 * refreshed without invoking ops.update_idle().
 *
 * This distinction is necessary, because an idle CPU can be "reserved" and
 * awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as
 * busy even if no tasks are dispatched. In this case, the CPU may return
 * to idle without a true state transition. Refreshing the idle masks
 * without invoking ops.update_idle() ensures accurate idle state tracking
 * while avoiding unnecessary updates and maintaining balanced state
 * transitions.
 */
void __scx_update_idle(struct rq *rq, bool idle, bool do_notify)
{
	int cpu = cpu_of(rq);

	lockdep_assert_rq_held(rq);

	/*
	 * Trigger ops.update_idle() only when transitioning from a task to
	 * the idle thread and vice versa.
	 *
	 * Idle transitions are indicated by do_notify being set to true,
	 * managed by put_prev_task_idle()/set_next_task_idle().
	 */
	if (SCX_HAS_OP(update_idle) && do_notify && !scx_rq_bypassing(rq))
		SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);

	/*
	 * Update the idle masks:
	 * - for real idle transitions (do_notify == true)
	 * - for idle-to-idle transitions (indicated by the previous task
	 *   being the idle thread, managed by pick_task_idle())
	 *
	 * Skip updating idle masks if the previous task is not the idle
	 * thread, since set_next_task_idle() has already handled it when
	 * transitioning from a task to the idle thread (calling this
	 * function with do_notify == true).
	 *
	 * In this way we can avoid updating the idle masks twice,
	 * unnecessarily.
	 */
	if (static_branch_likely(&scx_builtin_idle_enabled))
		if (do_notify || is_idle_task(rq->curr))
			update_builtin_idle(cpu, idle);
}
#endif	/* CONFIG_SMP */

void scx_idle_enable(struct sched_ext_ops *ops)
{
	if (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
		static_branch_disable(&scx_builtin_idle_enabled);
		return;
	}
	static_branch_enable(&scx_builtin_idle_enabled);

	if (ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)
		static_branch_enable(&scx_builtin_idle_per_node);
	else
		static_branch_disable(&scx_builtin_idle_per_node);

#ifdef CONFIG_SMP
	/*
	 * Consider all online cpus idle. Should converge to the actual state
	 * quickly.
	 */
	cpumask_copy(idle_masks.cpu, cpu_online_mask);
	cpumask_copy(idle_masks.smt, cpu_online_mask);
#endif
}

void scx_idle_disable(void)
{
	static_branch_disable(&scx_builtin_idle_enabled);
	static_branch_disable(&scx_builtin_idle_per_node);
}

/********************************************************************************
 * Helpers that can be called from the BPF scheduler.
 */
__bpf_kfunc_start_defs();

static bool check_builtin_idle_enabled(void)
{
	if (static_branch_likely(&scx_builtin_idle_enabled))
		return true;

	scx_ops_error("built-in idle tracking is disabled");
	return false;
}

/**
 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
 * @p: task_struct to select a CPU for
 * @prev_cpu: CPU @p was on previously
 * @wake_flags: %SCX_WAKE_* flags
 * @is_idle: out parameter indicating whether the returned CPU is idle
 *
 * Can only be called from ops.select_cpu() if the built-in CPU selection is
 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
 * @p, @prev_cpu and @wake_flags match ops.select_cpu().
 *
 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
 * currently idle and thus a good candidate for direct dispatching.
 */
__bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
				       u64 wake_flags, bool *is_idle)
{
	if (!check_builtin_idle_enabled())
		goto prev_cpu;

	if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
		goto prev_cpu;

#ifdef CONFIG_SMP
	return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
#endif

prev_cpu:
	*is_idle = false;
	return prev_cpu;
}

/**
 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
 * per-CPU cpumask.
 *
 * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
 */
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
{
	if (!check_builtin_idle_enabled())
		return cpu_none_mask;

#ifdef CONFIG_SMP
	return idle_masks.cpu;
#else
	return cpu_none_mask;
#endif
}

/**
 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
 * per-physical-core cpumask. Can be used to determine if an entire physical
 * core is free.
 *
 * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
 */
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
{
	if (!check_builtin_idle_enabled())
		return cpu_none_mask;

#ifdef CONFIG_SMP
	if (sched_smt_active())
		return idle_masks.smt;
	else
		return idle_masks.cpu;
#else
	return cpu_none_mask;
#endif
}

/**
 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
 * either the percpu, or SMT idle-tracking cpumask.
 * @idle_mask: &cpumask to use
 */
__bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
{
	/*
	 * Empty function body because we aren't actually acquiring or releasing
	 * a reference to a global idle cpumask, which is read-only in the
	 * caller and is never released. The acquire / release semantics here
	 * are just used to make the cpumask a trusted pointer in the caller.
	 */
}

/**
 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
 * @cpu: cpu to test and clear idle for
 *
 * Returns %true if @cpu was idle and its idle state was successfully cleared.
 * %false otherwise.
 *
 * Unavailable if ops.update_idle() is implemented and
 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
 */
__bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
{
	if (!check_builtin_idle_enabled())
		return false;

	if (ops_cpu_valid(cpu, NULL))
		return scx_idle_test_and_clear_cpu(cpu);
	else
		return false;
}

/**
 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
 * @cpus_allowed: Allowed cpumask
 * @flags: %SCX_PICK_IDLE_CPU_* flags
 *
 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
 * number on success. -%EBUSY if no matching cpu was found.
 *
 * Idle CPU tracking may race against CPU scheduling state transitions. For
 * example, this function may return -%EBUSY as CPUs are transitioning into the
 * idle state. If the caller then assumes that there will be dispatch events on
 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
 * event in the near future.
 *
 * Unavailable if ops.update_idle() is implemented and
 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
 */
__bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
				      u64 flags)
{
	if (!check_builtin_idle_enabled())
		return -EBUSY;

	return scx_pick_idle_cpu(cpus_allowed, flags);
}

/**
 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
 * @cpus_allowed: Allowed cpumask
 * @flags: %SCX_PICK_IDLE_CPU_* flags
 *
 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
 * empty.
 *
 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
 * set, this function can't tell which CPUs are idle and will always pick any
 * CPU.
 */
__bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
				     u64 flags)
{
	s32 cpu;

	if (static_branch_likely(&scx_builtin_idle_enabled)) {
		cpu = scx_pick_idle_cpu(cpus_allowed, flags);
		if (cpu >= 0)
			return cpu;
	}

	cpu = cpumask_any_distribute(cpus_allowed);
	if (cpu < nr_cpu_ids)
		return cpu;
	else
		return -EBUSY;
}

__bpf_kfunc_end_defs();

BTF_KFUNCS_START(scx_kfunc_ids_idle)
BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_idle)

static const struct btf_kfunc_id_set scx_kfunc_set_idle = {
	.owner			= THIS_MODULE,
	.set			= &scx_kfunc_ids_idle,
};

BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)

static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
	.owner			= THIS_MODULE,
	.set			= &scx_kfunc_ids_select_cpu,
};

int scx_idle_init(void)
{
	int ret;

	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_select_cpu) ||
	      register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_idle) ||
	      register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &scx_kfunc_set_idle) ||
	      register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &scx_kfunc_set_idle);

	return ret;
}